侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其他机器人
当前位置:

OFweek机器人网

工业机器人

正文

徐宗本:“人机大战”背后的冷思考

导读: “人机大战”到底说明了什么?带给我们怎样的启示?刚刚在天府脑科学论坛——脑信息科学发展研讨会上做了“基于视觉认知模拟的数据建模”报告的西安交通大学徐宗本院士,3月14日接受记者采访,为我们“冷静”揭秘“人机大战”的神秘面纱。

  近日,美国谷歌公司人工智能“阿尔法围棋(AlphaGo)”三连胜世界围棋冠军李世石,“人机大战”引全社会热烈关注,科技又一次展示了爆炸性的发展速度和力量,对此有人惊奇,有人恐慌,更有人忿忿不平。“人机大战”到底说明了什么?带给我们怎样的启示?刚刚在天府脑科学论坛——脑信息科学发展研讨会上做了“基于视觉认知模拟的数据建模”报告的西安交通大学徐宗本院士,3月14日接受记者采访,为我们“冷静”揭秘“人机大战”的神秘面纱。

  AlphaGo的胜出是“大数据”的胜利

  “人机对决实际上是一个人与历史的对决,也是一个人与群体的对决,一个生物人与“人与机器混合生物”之间的对决。所以我认为AlphaGo的胜利本质上是当代信息技术综合运用的胜利,是大数据的胜利、也是机器学习的胜利。”徐宗本院士一语道破AlphaGo胜利的“秘诀”。

  他从人和机器的下棋原理从策略上进行了分析对比,“人下棋是从当前的局部出发,通过思考此后少数几步的可能性,并凭直觉判断对全局的影响来行棋。”而AlphaGo与人采用了完全不同的两种策略解决问题,他说:“AlphaGo是从整体出发,棋法是整体性的步骤,它追求全局而不是局部优,所以容忍局部走法上的似乎“幼稚”的举棋,因此人机大战的任何一方都有输嬴的可能性。”在他看来,机器的输赢决定于程序设计的缺陷程度以及所使用算法中随机性的作用,人则取决于临场发揮水平及心理因素等。

  由此可见,AlphaGo程序设计的精密度和使用算法先进性是其致胜关键。从其工作原理可见“大数据”的关键作用。因为AlphaGo是一个由高级搜索树与深度神经网络相结合的程序。神经网络包含12个处理层,用以描述棋盘及棋法,每一层则包含数百万个人工神经元,各层神经元之间的联结通过训练确定。其中的“决策网络”负责选择走棋策略,“价值网络”部分负责评估态势并预测环境。谷歌方面用收集的人类围棋高手的3000万步围棋走法,并用这些经验数据来训练神经网络。与此同时,AlphaGo也自行研究新战略,在它的神经网络之间运行了数千局对局,生成新的经验数据以对所训练的神经网络进行强化学习。由于它可以利用Google云平台不停地练习、练习、再练习,每一秒都在进步,永不停歇,由此所生成的训练数据无穷无尽,一个典型呈现“流”特征的大数据。所有算法训练通过Google云平台完成。

  因此,AlphaGo的算法与架构的创新并不是最突出的,至于它为什么还会赢?徐宗本从技术上分析到:“AlphaGo的胜利,一靠强大的计算机,尤其云平台与超算的结合支持大数据的学习,二靠有大数据,有收集到的和不间断自对局产生的用于训练机器性能的数据,三靠能够指导机器学懂大数据的机器学习算法。”此外,他认为与人相比,机器的稳定性相对人类的心态来说,具有无可比拟的最大优势。

1  2  3  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

OFweek品牌展厅

365天全天候线上展厅

我要展示 >
  • 机器人
  • 机器视觉
  • 伺服
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码: