侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其他机器人
当前位置:

OFweek机器人网

其它

正文

到底什么才是真正的人工智能?

导读: 人工智能在消费应用领域里最常见的应用方向,当前技术的限制,以及为什么说我们还没必要担心机器人的崛起。

  人工智能如今已经成为科技产业所讨论的普遍话题。这项技术已经被应用在了Gmail、自动驾驶汽车和照片整理上面,MarkZuckerberg甚至还打算开发一位人工智能管家。但问题在于,人工智能这个概念有点太科幻了,它总是让人想起操纵宇宙飞船的超级计算机,而不是特别聪明的垃圾邮件过滤器。如此一来,人们已经开始担心人工智能会在何时造反并统治人类了。

  科技公司在一定程度上也鼓励着人们忽略人工智能到科幻人工智能之间的差距,但当你试图去理解计算机所做的事情时,就会很容易了解到它们的区别。本文要讲的就是人工智能在消费应用领域里最常见的应用方向,当前技术的限制,以及为什么说我们还没必要担心机器人的崛起。

  

  神经网络、机器学习和深度学习到底是什么

  这3个名词如今拥有相当高的出现频率。它们可以被看作是3个不同的层次:神经网络位于底层,它是建立人工智能的计算机结构;机器学习是下一层,它是可以在神经网络上运行的一个程序,可训练计算机在数据当中寻找特定的答案;深度学习处在顶层,这是一种在最近10年里才流行起来的特性类型的机器学习,而它的流行主要得益于廉价处理性能和互联网数据。

  神经网络的概念可以追溯到50年代人工智能的开端。简单来说,它是一种建造计算机的方式,使其看上去像是一个卡通化的大脑,当中由神经一样的节点连结成网络。这些节点本身都很笨,只能回答最基本的问题。可一旦组合在一起,它们就可以解决复杂问题。更为重要的是,有了正确的算法之后,它们还能拥有学习能力。

  纽约大学计算机科学教授ErnestDavis这样介绍道,假如你想让计算机学习如何过马路,在传统编程方式下,你需要给他一套非常具体的规则,告诉它如何左右看,等待车辆,使用斑马线等等,然后让它尝试。而在面对机器学习时,你只需向它展示10000部安全横穿马路的视频(以及10000部过马路被车撞的视频)就行了。

  在这件事上面,如何让计算机吸收视频当中的所有信息是一大难点。在过去的几十年里,研究者尝试过各种办法来教计算机,其中就包括增强学习和遗传算法。前者需要你在计算机达成目标时给予其奖励,以逐渐优化最佳解决方案;后者则会以类似物竞天择的方式对解决问题的不同方法进行对比。

1  2  3  4  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

OFweek品牌展厅

365天全天候线上展厅

我要展示 >
  • 机器人
  • 机器视觉
  • 伺服
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号