侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其他机器人
当前位置:

OFweek机器人网

服务机器人

正文

卡耐基梅隆邢波:人工智能的价值在于通用性

导读: 卡耐基梅隆大学计算机科学系教授邢波数博会人工智能与大数据主题论坛上为我们做了一个系统性演讲 ,把人工智能变成了一个集数据,任务,模型,算法,实现,系统,设备的东西,让我们茅塞顿开。下面为邢波教授演讲的精华整理......

  卡耐基梅隆大学计算机科学系教授邢波数博会人工智能与大数据主题论坛上为我们做了一个系统性演讲,把人工智能变成了一个集数据,任务,模型,算法,实现,系统,设备的东西,让我们茅塞顿开。下面为邢波教授演讲的精华整理:

  忆人工智能的过去

  在60年代前有一个图灵测试的概念,人跟机器人通过一个界面来交流,或者通话方式的状态来交流,当人不能分清幕布后面是人还是机器,这就说机器达到了人的智能,这是非常美妙的人工智能愿景。

  紧接着有几个科学家发明了一台叫做逻辑理论家的机器,在自我环境去证明数学定理,把罗素很有名的证明定理中的前52道证明出了38道,这使人们产生了期望——也许通过符号运算或者逻辑推理的方法,能够找到物质的心灵本质,使这个设备获得一种思想或者一种感情能力,以至于达到所谓的人和机器人达到不可区分的地步。

  这个方法被很多科学家推广,在50-60年代有很多早期的结果令人兴奋。有人还发明可以做数学应用题的机器,包括小i机器人的鼻祖对话机器人也在那个时候产生了,能形成很有意思的人机对话。另外,理论上产生了一些突破,比如现在可以在AlphaGo里面看到的增强学习的原型。包括现在提到深度学习一些基本原理也是在那个时候出现的,叫感知器。这一系列结果,使人们对人工智能产生狂热的乐观,我们会觉得在十年之内可以预计机器在棋牌或者更广泛的范围内打破人类,有这么一个期许。

  但是很快的,很不幸地人们发现这条路径不顺利,这些当时所谓的国际理论家,这些对话机只不过是玩具范畴内的东西,它们实现的功能只能在很小的领域应用,布置新的任务或者设置新的功能,有很多障碍是不可逾越的,其中就包含了本身的方法论,有时候他们设立的模型有障碍,本身必须的方程不能表达;还有计算的障碍,实现功能所需要的计算是一个技术性问题,当任务量增加了十倍,工作量计算量增加一百倍,这样设备跟不上。最后没有达到人类的预期,最后结果很严重,公众和政府投资或者经费的方面都产生了一些相当巨大的滑坡,这是人工智能的第一个冬天。

  虽然是冬天,还是有很多坚守者在接着往前走,他们突破了一些阻力,做了一些进一步的工作。在80年代的时候有人做了一个专家系统,能帮一个公司节省每年几千万的经费,这是一个很巨大的成功。

  其次,日本也有人提出做一个专门的专家系统计算机,能帮助这个公司或者政府做各种各样的决策。在更广泛跟人的功能近似的领域,比如数字,或者跟人下棋诸如此类的。

  但是,这个短暂繁荣没也有很长久,很快人们发现实现这些功能的手段是一个相当耗费功能和资源的手段,比如在同一个时段,我们看到苹果机,PC机以很低的价格进入每个家庭,同样每个专家系统在公司里面需要很高的维护价格,并没有小型机低很多,然后很快地,军方,政府,用户又很快对人工智能失去兴趣,人工智能又入冬了。

  没突破是因为没目标

  所以我想,也许人工智能的路径或者目标有一些问题,也许我们重新冷静一下做人工智能是为了什么?我经常跟朋友聊天,他问我会不是哪一天造出一个打扫院子的机器人,然后陪你聊天,他们感觉人工智能是无所不能的产品或者设备,能够很灵活训练做各种各样的事情。或者能不能做一个像人的机器?

  这里面有一个技术上的模糊点。人和动物的功能和作用非常多方面,在目标不明确的时候,很难对产品做设计。比如做一个鸟,本身里面就包含不确定性,做这个东西是为了像鸟,还是飞,还是给你唱歌诸如此类的。这使人工智能的学者和技术人员重新思考,做人工智能的目标是比较宽泛的定义还是基于实际功能的定义?

  如果做一台机器要能飞,这跟做鸟是完全不一样的目标,要是只要可以跟鸟一样的飞,可以采用机械式用空气中的力学和燃料技术实行另外的飞行方法。产生两个不同的路径左边是仿生学或者生物科学的进步,了解生物动物的结构和原理,然后复制重现他们的功能。这里面有很多的困难,对它们的功能不了解?其实了解很清楚之后,复制方面也有困难,包括材料学等等。

  而右边的方法不一样,它是把这个功能做了一个直接非常简单的数学描述,可以通过这个数学描述,对形成功能的手段和达到功能的目标之间形成一个很明显的因果关系,这样可以形成一个明显试错过程,过程中可以提供很多手段。由于这是一个工程上的方法,使得你可以利用很多不对称的资源,比如你可以去使用很大的计算能力或者很大的电力,或者其它方面的东西,这是生物本身不具备的东西。但是你可以导入到你的设备,产生非对称的优势,来实现你所需要的目标。

1  2  3  4  5  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

OFweek品牌展厅

365天全天候线上展厅

我要展示 >
  • 机器人
  • 机器视觉
  • 伺服
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号