侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其他机器人
当前位置:

OFweek机器人网

系统软件

正文

百度开源人工智能代码 机器训练提速百倍

导读: 百度硅谷AI实验室(SVAIL)近日宣布,百度已开源关键人工智能(AI)软件Warp-CTC,并公开了关键代码。

  百度硅谷AI实验室(SVAIL)近日宣布,百度已开源关键人工智能(AI)软件Warp-CTC,并公开了关键代码。百度硅谷实验室已向GitHub上传了Warp-CTCC代码库,鼓励开发者试用这些代码。百度表示,代码将开放给所有从业者,包括但不限于创业者。百度此次开源人工智能软件代码,让全球知识共享又迈出了一大步,知识共享领域将激发出更多创新,开发者能获取更丰富的技术学习途径,促进开发者进行技术开发,对全球人工智能行业发展有着极其重要的现实意义。

  Warp-CTC是百度前期为了在最新的计算机芯片上更快速运行而专门研发的一种改良版深度学习算法。CTC(链结式时间分类算法)方法始于2006年,在瑞士AI实验室IDSIA的论文中有所描述。CTC结合了多个不同的神经网络设计,以处理不完美的数据集。百度SVAIL工程师在打造端对端语音识别系统时,在CTC基础上开发了Warp-CTC,该软件可用于解决绘制输入序列到输出序列图谱过程中的监督问题,改善培训模型的可扩展性,目前百度已经将其运用在了语音识别的改进和优化上。

  在此次正式开源之前,Warp-CTC已被用于开发一款强大的深度语音识别系统DeepSpeech2。对于一些简短的句子,该系统甚至比大多数人类正确识别语音的能力强。该技术目前已帮助百度数亿用户在移动端更好的获取相应的服务。百度也表示,希望此次开源能促使端到端的深度学习变得更简单、速度更快,加快研究者的进度,进而对机器学习领域的进步做出贡献。

百度位于硅谷的人工智能实验室

  深度学习是人工智能的一个分支学科,它可以让计算机像人脑一样趋于智能化,将所听、所看、所想准确无误地转换成文字。但其难点在于机器训练。犹如解数学题,每个类型的题目均有一套固有的解法,若想掌握,则需要不断摸索与练习,机器训练亦是如此。CTC便是机器“解题”的方法之一,如今已广泛运用于深度学习训练中。它是一种无需了解输入输出对齐原理即可与序列预测监督训练同步执行的对象函数。

  近几年来,包括深度学习、语音识别等在内的人工智能技术已经成为行业热点。以深度学习为例,将这项技术应用到互联网产品中之后,就可以实现各种“用脑”的学习型操作,如精致地转录语音或识别物体图像,相当于将特定字词的音频或特定物体的图像导入一个大型模拟神经网络,随着时间推移,此网络将不断“自我学习”,从而可以识别出更多的新目标。Warp-CTC技术的应用将有效改善用现有的方式应用CTC时对内存的庞大需求,提升速度数十甚至数百倍。

1  2  下一页>  
声明: 本文由入驻OFweek公众平台的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

我来说两句

(共0条评论,0人参与)

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

OFweek品牌展厅

365天全天候线上展厅

我要展示 >
  • 机器人
  • 机器视觉
  • 伺服
  • 猎头职位
更多
文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号