侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

【深度】在实现自主导航之前 移动机器人都有哪些避障方法?

2016-05-25 05:53
黯影冰风
关注

  4、超声波传感器

  超生波传感器检测距离原理是测出发出超声波至再检测到发出的超声波的时间差,同时根据声速计算出物体的距离。由于超声波在空气中的速度与温湿度有关,在比较精确的测量中,需把温湿度的变化和其它因素考虑进去。超声波传感器一般作用距离较短,普通的有效探测距离都在5-10m之间,但是会有一个最小探测盲区,一般在几十毫米。由于超声传感器的成本低,实现方法简单,技术成熟,是移动机器人中常用的传感器。

  

  机器人避障算法有哪些?

  目前移动机器人的避障根据环境信息的掌握程度可以分为障碍物信息已知、障碍物信息部分未知或完全未知两种。

  传统的导航避障方法如可视图法、栅格法、自由空间法等算法对障碍物信息己知时的避障问题处理尚可,但当障碍信息未知或者障碍是可移动的时候,传统的导航方法一般不能很好的解决避障问题或者根本不能避障。

  而实际生活中,绝大多数的情况下,机器人所处的环境都是动态的、可变的、未知的,为了解决上述问题,人们引入了计算机和人工智能等领域的一些算法。同时得益于处理器计算能力的提高及传感器技术的发展,在移动机器人的平台上进行一些复杂算法的运算也变得轻松,由此产生了一系列智能避障方法,比较热门的有:遗传算法、神经网络算法、模糊算法等,下面分别加以介绍。

  1、基于遗传算法的机器人避障算法

  遗传算法(geneticalgorithm,简称GA)是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法是借鉴了进化生物学中的遗传、突变、自然选择以及杂交等现象而发展起来的。遗传算法采用从自然进化中抽象出来的几个算子对参数编码的字符串进行遗传操作,包括复制或选择算子(ReproductionorSelect)、交叉算子(Crossover)、变异算子(Mutation)。

  遗传算法的主要优点是:采用群体方式对目标函数空间进行多线索的并行搜索,不会陷入局部极小点;只需要可行解目标函数的值,而不需要其他信息,对目标函数的连续性、可微性没有要求,使用方便;解的选择和产生用概率方式,因此具有较强的适应能力和鲁棒性。

  

  2、基于神经网络算法的机器人避障方法

  神经网络(neuralnetwork,缩写NN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。人工神经网络通常通过一个基于数学统计学类型的学习方法优化,是一种非线性统计性数据建模工具,可以对输入和输出间复杂的关系进行建模。

  传统的神经网络路径规划方法往往是建立一个关于机器人从初始位置到目标位置行走路径的神经网络模型,模型输入是传感器信息和机器人前一位置或者前一位置的运动方向,通过对模型训练输出机器人下一位置或者下一位置的运动方向。

  可以建立基于动态神经网络的机器人避障算法,动态神经网络可以根据机器人环境状态的复杂程度自动地调整其结构,实时地实现机器人的状态与其避障动作之间的映射关系,能有效地减轻机器人的运算压力。还有研究通过使用神经网络避障的同时与混合智能系统(HIS)相连接,可以使移动机器人的认知决策避障能力和人相近。

  

<上一页  1  2  3  4  下一页>  余下全文
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号