侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

【深度解析】人工智能的产业与技术蓝图

2016-06-16 09:03
魏丁小陆
关注

  尽管互联网的普及打造了包括谷歌、亚马逊、阿里巴巴、腾讯、百度、京东等一批巨头以及数量更为庞大的中小企业,基于网络的创新应用和服务类型也多种多样,但技术瓶颈的制约已经越来越明显:生活方面需求痛点的解决、生产领域具有适应性和资源效率的智慧工厂的建立、物流体系中更加方便快捷的配送方式的建设等问题,都面临智能化程度不足带来的障碍。只有人工智能才能为“万物互联”之后的应用问题提供最完美的解决方案。

  人工智能的价值如此重要,以至于我们可以毫不夸张地说,它将成为IT领域最重要的技术革命,目前市场关心的IT和互联网领域的几乎所有主题和热点(智能硬件、O2O、机器人无人机工业4.0),发展突破的关键环节都是人工智能。

  什么是人工智能?

  目前市场上所谓“智能”的设备或概念很多,从智能手机到智能家居等,但这些“智能”实际上是“smart”的含义,即灵巧。真正的“智能”,其对应的英文单词应该是“intelligent”。

  “人工智能”一词最初是在1956年达特茅斯学会上被提出的。从学科定义上来说,人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。

  如果从比较容易理解的角度来概括的话,人工智能是指计算机系统具备的能力,该能力可以履行原本只有依靠人类智慧才能完成的复杂任务。

  人工智能的应用领域主要包含以下几个方面的内容:自然语言处理(包括语音和语义识别、自动翻译)、计算机视觉(图像识别)、知识表示、自动推理(包括规划和决策)、机器学习、机器人学。

  大数据有效提高人工智能水平

  过去机器学习的研究重点一直放在算法的改进上,但最近的研究表明,采用更大容量数据集进行训练带来的人工智能提升超过选用算法带来的提升。我们已经进入到大数据时代,来自全球的海量数据为人工智能的发展提供了良好的条件。

  根据IDC的监测统计,2011年全球数据总量已经达到1.8ZB(1ZB等于1万亿GB,1.8ZB也就相当于18亿个1TB的移动硬盘,人均200GB,这些信息量相当于可以填充572亿个32GB的iPad),而这个数值还在以每两年翻一番的速度增长,预计到2020年,全球将总共拥有35ZB的数据量,增长近20倍。

  这些数据又并非仅仅包含人类在互联网上发布的信息。全世界的工业设备、汽车、电表上有着无数的数码传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。因此除了互联网,大数据的爆发很大程度上还来自于传感器技术和产品的突飞猛进。人类在制造数据和搜集数据的量级和速度上将呈现几何级数的爆发式增长!未来,随着互联网应用的进一步扩展以及传感器不断融入人类生活工作的方方面面,数据产生、搜集的速度和量级将不断加速,人工智能的进化速度也将加快。

  (人工智能发展简史;资料来源:维基百科,华泰证券研究所)

  云计算使大规模并行计算得以实现

  从概念上讲,我们可以把云计算看成是“存储云+计算云”的有机结合,即“云计算=存储云+计算云”。存储云的基础技术是分布存储,而计算云的基础技术正是并行计算:将大型的计算任务拆分,然后再派发到云中的各个节点进行分布式的计算,最终再将结果收集后统一处理。大规模并行计算能力的实现使得人工智能往前迈进了一大步。

  云计算的实质是一种基础架构管理的方法论,是把大量的计算资源组成IT资源池,用于动态创建高度虚拟化的资源供用户使用。在云计算环境下,所有的计算资源都能够动态地从硬件基础架构上增减,以适应工作任务的需求。云计算基础架构的本质是通过整合、共享和动态的硬件设备供应来实现IT投资的利用率最大化,这就使得使用云计算的单位成本大大降低,非常有利于人工智能的商业化运营。

  深度学习促人工智能产业跨越式发展

  “深度学习”是机器学习研究中的一个新的领域,它模拟人类大脑神经网络的工作原理,将输出的信号通过多层处理,将底层特征抽象为高层类别,它的目标是更有效率、更精确地处理信息。深度学习自2006年由GeoffreyHinton教授和他的两个学生提出后,使得机器学习有了突破性的进展,极大地推动了人工智能水平的提升。2013年,《麻省理工技术评论》把它列入年度十大技术突破之一。

  深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。

  区别于传统的浅层学习,深度学习的不同在于:一.强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;二.明确突出了特征学习的重要性。也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

  深度学习使人工智能在几个主要领域都获得了突破性进展:在语音识别领域,深度学习用深层模型替换声学模型中的混合高斯模型(GaussianMixtureModel,GMM),获得了相对30%左右的错误率降低;在图像识别领域,通过构造深度卷积神经网络(CNN),将Top5错误率由26%大幅降低至15%,又通过加大加深网络结构,进一步降低到11%;在自然语言处理领域,深度学习基本获得了与其他方法水平相当的结果,但可以免去繁琐的特征提取步骤。可以说,到目前为止,深度学习是最接近人类大脑的智能学习方法。深度学习引爆了一场革命,将人工智能带上了一个新的台阶,将对一大批产品和服务产生深远影响。

  (三位人工智能领域的泰斗级人物加盟国际著名互联网公司;资料来源:科大讯飞,华泰证券研究所)

1  2  3  4  5  6  7  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号