侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

造人工智能:除了大数据,还可“小样本”

2016-06-17 09:32
月城清浅
关注

  当你用手机订餐、购物、打车,享受着移动互联网带来的各种便利时,您的这些生活数据,正为“人工智能”贡献着力量。

  香港科技大学计算机科学及工程学系讲座教授兼系主任杨强说,说起人工智能,很多人可能对基于大数据的人工智能很熟悉,但其实还有基于小样本的尝试和迁移,这也是人工智能的一种路径。

  杨强指出,拥有大数据的人毕竟是少数,这样发展下去,拥有数据越多的人,就能做出越好的人工智能产品,反过来,因为能提供更加便捷的服务,这些人又能吸引更多的用户贡献数据。如此循环,就会形成一些“数据寡头”,进而成为“人工智能寡头”。

  “这会带来复杂的社会问题。从技术上来讲,小样本的迁移学习提供了一个缓解问题的方案,可以让初创公司在数据较少的领域也能提供人工智能的创新服务。”杨强说。

  大数据的依赖:Alpha Go其实是个“笨小孩”

  和天才的人类棋手相比,战胜李世石的AlphaGo其实是个“笨小孩”,它观摩和训练的棋局数以千万计,胜在了“勤能补拙”。

  AlphaGo结合了深度学习、强化学习和蒙特卡洛树搜索这三种算法,其中最主要的原理是深度学习。所谓深度学习,即搭建多层的人工神经网络,通过输入大数据来训练它的方法。围棋的大数据约从2000年开始积累,人们上网对弈的无数棋局逐渐汇聚成了人工智能的“启蒙教材”。

  事实上,目前各种风头正劲的人工智能应用,都离不开基于大数据的深度学习。不过,杨强指出,数据需求量太大正是目前人工智能的一个显著缺点。因为深度学习必须具备大数据,而经过学习训练后的知识又很难迁移到新的领域,这也导致了计算机学习效率不高。

  深度学习还要求一个数据要对应一个标注,即告诉计算机一张图片或一段语音是什么意思,标注量的多少决定了人工智能的优劣。“在语音领域,你能标注1万小时,而我能标注7万小时,我就比你强。获得这种标注,虽然技术含量不高,但需要投入大量的人力和时间,因此很昂贵,像谷歌、百度这些大公司都是花很多钱让别的公司为他们标注数据。”杨强说。

  拥有越多数据,就拥有越多资本,而投入越多资本,又会获得越多标注的数据。“到时,所有的人工智能创新将全都集中在几家大公司手里。做不做新的技术,做什么样的新技术,全由这几家公司说了算。”杨强说。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

技术文库

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号