侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

造人工智能:除了大数据,还可“小样本”

2016-06-17 09:32
月城清浅
关注

  小样本的尝试:不必在每个领域都依赖大数据从头学起

  2005年,杨强提出了迁移学习的概念,目标是让计算机把大数据领域习得的知识和方法迁移到数据不那么多的领域,这样,计算机也可以“举一反三”“触类旁通”,而不必在每个领域都依赖大数据从头学起。

  在此之前,美国的科学家一直在尝试类似“案例学习”的理论,然而发展了20多年,却很难从实验室进入工业领域。

  2005年,微软在其举办的世界数据挖掘大赛中出了一道关于搜索的题,当时搜索正是研究界最热的话题。“我们去参赛了,用了迁移学习的方法,把机器在别的垂直领域的学习经验迁移过来,完成了比赛作品,结果夺得了三项大奖的世界第一。”杨强回忆说。

  “我们在海南种植了3000株基因各不相同的小米,然后把小米的基因、生长的外部环境以及收获时的表型数据,比如颗粒饱满度、叶子宽度等,建立一个对应的统计关系,并用机器学习的方法找出携带哪些基因的样本生长得比较好。那么,下一次,到别的地方,我们希望用更少的作物、更短的时间就找出最佳的样本。”

  “与互联网短时间内动辄上千万上亿的数据量相比,迁移学习非常适合这个案例,因为在不同的地方,如果总像撒胡椒面一样种植几千、几万个样本,而且等作物成熟才能集齐数据,就耗时太长、花费太大了。”杨强说,未来迁移学习还可以应用在金融、医疗、客服等多个领域。

  迁移的难点:没有形成一个理论模型

  那么,如何做到知识迁移呢?据杨强介绍,首先,针对一个新领域,科学家要建立一个本体,本体包含概念以及这些概念之间的关系,比如瓶子和水杯关系比较近,瓶子和汽车关系比较远,诸如此类,把本体输入计算机作为原始知识库。然后,再对比训练好的源领域和只有本体的新领域,找到两个知识库的相似之处,将源领域知识库里没用的部分去掉、有用的部分保留,就可以把一个很大的模型迁移到新的领域了。

  杨强指出,迁移学习用在相近的领域,效果比较明显。比如,国际象棋和中国象棋就比较相近,有部分棋子相同、走法相近,计算机学会了国际象棋,运用迁移学习的方法,只用观摩较少的棋局,就可以学会中国象棋。但是,象棋和围棋就相隔较远,不适宜用迁移学习的方法。

  杨强的学生也在研究两个较远领域之间的迁移尝试,原理就好像摸着石头过河,两个石块之间距离太远,一步跨不过去,就在中间再铺垫一些石块,多跨几步就过去了。“其实,人也是这样,不可能学什么都一蹴而就。”杨强说。

  不过,迁移学习目前也面临很多困难,比如,衡量两个领域远近的标准还没有完善;也没有形成一个理论模型,告诉大家在运用这项技术时到底去除哪部分、迁移哪部分,现在只能一个项目一个项目地去研究,通用性较差。对此,一些笃信深度学习的业内人士认为,迁移学习并不是当前热点,也未必能引领人工智能未来的发展。

  “耐心一点,事在人为,谁敢说迁移学习不能给人工智能带来美好的明天?”杨强说。

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号