侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

【深度】多传感器融合技术简介

2016-07-01 11:38
魏丁小陆
关注

  随着机器人技术的不断发展,机器人的应用领域和功能有了极大的拓展和提高。智能化已成为机器人技术的发展趋势,而传感器技术则是实现机器人智能化的基础之一。由于单一传感器获得的信息非常有限,而且,还要受到自身品质和性能的影响,因此,智能机器人通常配有数量众多的不同类型的传感器,以满足探测和数据采集的需要。若对各传感器采集的信息进行单独、孤立地处理,不仅会导致信息处理工作量的增加,而且,割断了各传感器信息间的内在联系,丢失了信息经有机组合后可能蕴含的有关环境特征,造成信息资源的浪费,甚至可能导致决策失误。为了解决上述问题人们提出了多传感器融合技术(multi-sensorfusion)。

  概述

  多传感器融合又称多传感器信息融合(multi-sensor information fusion),有时也称作多传感器数据融合(multi-sensor data fusion),于1973年在美国国防部资助开发的声纳信号处理系统中被首次提出,它是对多种信息的获取、表示及其内在联系进行综合处理和优化的技术。它从多信息的视角进行处理及综合,得到各种信息的内在联系和规律,从而剔除无用的和错误的信息,保留正确的和有用的成分,最终实现信息的优化,也为智能信息处理技术的研究提供了新的观念。

  多传感器融合的层次结构

  多传感器融合在结构上按其在融合系统中信息处理的抽象程度,主要划分为三个层次:数据层融合、特征层融合和决策层融合。

  1.数据层融合:也称像素级融合,首先将传感器的观测数据融合,然后从融合的数据中提取特征向量,并进行判断识别。数据层融合需要传感器是同质的(传感器观测的是同一物理现象),如果多个传感器是异质的(观测的不是同一个物理量),那么数据只能在特征层或决策层进行融合。数据层融合不存在数据丢失的问题,得到的结果也是最准确的,但计算量大,且对系统通信带宽的要求很高。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号