侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

微软使用人工智能做你手机里的植物百科全书

2016-07-27 14:19
野明月
关注

  微软研究院学者与中科院植物学家使用机器学习来开发花卉识别系统。你是否遇到过这种情况?——外出与小孩散步,TA发现一朵很漂亮的花,跑过来问你是什么,但是你突然愣住了—因为你并不知道它是什么花。

  目前世界上至少存在250000种花,即便是经验丰富的植物学者也很难全部认识它们。如果现在告诉你以后不用尴尬对小孩承认你并不知道它是什么花,不久之后你就能在无论什么时候都能马上认出任何一种花卉或者任何植物的品种,会不会很期待?

  鉴于目前图像识别的强大能力以及使用智能手机随手拍照的便利,普通人通过使用工具也能轻松的识别各种花卉。这个工具叫做智能花卉识别系统(Smart Flower Recognition System),说起来这个系统也是在微软研究院学者与中国科学院植物研究所(Institute of Botany,Chinese Academy of Sciences,IBCAS)偶然促成的。

 

  微软亚洲研究院常务副院长芮勇在一次研讨会上介绍了微软的图像识别技术,在场的中国科学院植物研究所的植物学家大为高兴,因为之前他们付出了大量努力来收集区域花卉分布数据,但效果并不好。植物学家们马上意识到微软亚洲研究院(MSRA)的图像识别技术在这方面拥有巨大的潜力,同时芮勇也发现他也找到用来提升图像识别在解决真实问题方面的最佳试验工具。

  这项合作帮助中国科学院植物研究所加速累积了260万的图像数据,鉴于全世界任何人都能将任意花卉图片上传到这个数据库中,且没有人能对这个上传进行监督分类,微软亚洲研究院团队必须创造一个算法来过滤掉“不合格”的图片。但这还只是研究员JianlongFu和他的团队建立这个能够在许多不同种类的花卉中识别微小差异的工具中所面临的第一个问题。

  为了实现这个目标他们训练了超过20层的卷积神经网络,用来识别使用了一系列可以学习的过滤器的图像。概括来说,它的工作方式是这样的:

  在向前传导的过程中,每个过滤器对于输入容量的宽度和高度来说都是卷曲的,且在过滤器和输入中间计算点积。对于过滤器来说这样产生了一个二维的激活图,结果是神经网络学会了在输入区给定空间位置激活每一种特定特性种类的过滤器。

  在输入80万张图片到Caffe深度学习框架中后,微软亚洲研究院(MSRA)的研究人员逐渐让机器实现了在图片识别上超过90%的的准确率,这个令人震惊的结果远远超过人类的识别正确率。

  

  Caffe框架简介:

  Caffe由加州大学伯克利的PHD贾扬清开发,全称ConvolutionalArchitectureforFastFeatureEmbedding,是一个清晰而高效的开源深度学习框架,目前由伯克利视觉学中心(BerkeleyVisionandLearningCenter,BVLC)进行维护。贾扬清曾就职于MSRA、NEC、GoogleBrain,他也是TensorFlow的作者之一,目前任职于FacebookFAIR实验室。

  同时这个计划也大大帮助了中科院的植物学家们接近他们的目标,中科院植物所的ZhepingXu说到这个花卉识别系统不仅让业内专家有效地掌握中国植物分布的情况,还帮助对花卉非常有兴趣的普通人学到更多的知识。

  

  一张图片经过神经网络层层分析之后,机器学习能够识别出其为“雏菊”。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

技术文库

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号