侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

详解谷歌AI五大定律 AI的开发到底有多少坑?

2016-07-09 09:14
FlappyBird
关注

  防止对奖励条件的滥用和曲解:

  对于这个方面,谷歌提出的方法大概能分为这么几类:

  谨慎行动:这是最笨的办法,只要人们设计系统的时候够小心,可能就能避开所有能被算法利用来获取奖励的bug。或者从另一方面来说,人们可以故意留出一些可以被算法利用的漏洞来作为预警,并时刻监视这些漏洞,当这些漏洞被攻破,就意味着算法需要调整了。

  对抗性致盲:谷歌认为,可以通过隐藏奖励的部分细节、甚至完全将奖励机制黑箱化,让算法主体无法通过寻找规则本身的漏洞来攻破规则。黑箱原理类似于现在很多手机采用的指纹识别系统。有专用的芯片负责指纹识别,手机本身的系统是没有权限读取其芯片中的数据的,它能做的只有向芯片中发送指纹识别的请求,由芯片独立完成识别后再将结果返回给系统。这样无疑可以极大减小奖励的规则被算法利用的可能性。

  对抗奖励:甚至,谷歌还认为,人们可以为此设计另外一个代理,让两个代理互相监督对方有没有做出违背人类希望的选择。所谓以毒攻毒。

  对模型本身的限制:

  使用各种方法加强包括人类对算法的监视,确保当模型做出不良选择时,能及时的得到负面的反馈。为了不让模型训练后变得过于消极,如果人们确定代理在一个区域内活动的时候无论如何也不会给人类造成损害,可以将这个区域划为一个安全区域,在这个区域内,代理可以自由的进行各种探索。

  AI科研的下一个里程碑和挑战

  其实从这篇论文中就能看出:目前AI的研究方式无非就是抽象、逻辑化环境和任务目标,将这些东西教给代理,然后给它无数次机会和数据进行训练,让它在无数次尝试中得到最好的目标实现方法。而这些数据就是一堆堆的函数和概率。

  虽然谷歌已经开始着手为其定制预防措施,但不出意外的话,这些东西都不会是最后真正AI的形态。其实人们最初设想的AI,其外在的表现会和人一样:它们刚诞生的时候可能也什么都不懂,但是它有一种像人类一样的,能够通用于世间万物的学习能力。很快就能学会它需要的所有东西,(最后超越人类)。

  目前,研究一种通用的学习算法正是AI科研领域内很多学者研究的重点。在最近的一次采访中,深度学习大牛,Image Net的创办者李飞飞最近在a16z的podcast中也表示:“我的下一个梦想就是希望能教会机器人应该怎么去学习,而不是模仿训练数据。”

  如果AI真的具有了一种通用的学习能力,那我们该传达给它们的就不应该是更多的规则,而是一种新型的,对人类和机器都会有利的价值观了,那可能又会是一种全新的方法和思路。这也是Deep Mind的早期投资人Jaan Tallinn曾预言过的下一个极有潜力的AI相关领域:AI的价值观对接研究(value-alignment research)

  不能轻视,但也无需恐惧。让我们期待那一天的到来。

<上一页  1  2  3  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号