侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

【深度分析】Facebook和Google努力发展AI 错了吗?

2016-07-15 08:47
路过的码农
关注

  KevinLee,Facebook的一名服务器工程师说,由于拥有了更快的速度,他们得以帮Facebook的研究者们用更多数据训练了他们的深度学习软件,“这些服务器都是针对AI研究和机器学习计算而特制的。”他说,“这些GPU可以把图片分成无数个细小的局部然后同时处理它们。”

  Facebook在每台大苏尔服务器上放置了大概8台NVIDIA——这种芯片的领导级制造商——制造的GPU。Lee不愿透露已经部署了多少台这种服务器,但是他说Facebook至少已经有数千个GPU投入工作了。大苏尔服务器已经被安放在了公司在普林维尔、阿什本和弗吉尼亚的数据中心。

  由于GPU的耗电量极其庞大,Facebook不得不用比其它服务器更低的密度来在数据中心中布置这些服务器,否则可能会形成一些过热的情况,不仅会对冷却系统造成更大的负担,也会消耗掉更多的能量。一个2.1米(7英尺)高的机架上可以堆叠8台大苏尔服务器,而相同的机架可以容纳30台标准的Facebook服务器,如果是处理日常任务的话,它们其实可以做得更快。

  Facebook远远不是唯一一家运行着庞大的数据中心以及使用GPU来进行机器学习研究的公司。微软、谷歌和中国的百度都正在使用GPU来加速它们的研究进度。

  对Facebook来说不太寻常的一件事就是它公开了大苏尔服务器和其它服务器的设计,以及将在普林维尔建立的数据中心。他们将这些信息在一个2011年Facebook建立的以鼓励计算机公司共同进行低成本计算设备开发为目的的叫做“开源计算计划”(Open Compute Project)的计划中贡献了出来。这项计划被看做帮助了亚洲国家的硬件公司以及挤压了像戴尔和惠普这样的传统供应商的生存空间。

  今年早些时候大苏尔计划公布的时候,Facebook人工智能实验室的主任燕乐存(Yann Le Cun)说,他相信通过促进更多的组织和公司建立更强大的进行机器学习的基础设施,这个开源计划可以加速相关领域的研究进度。

  普渡大学的一位副教授Eugenio Culurciello说,深度学习的实用性意味着这种芯片几乎一定会被广泛使用。他说,“这种需求已经很大了,而且在将来也只会越来越大。”

  在被问及Facebook有没有在着手研发自己的定制芯片时,Lee说,“公司正在考虑。”

  战术的勤奋与战略的懒惰

  Big Sur的特点是什么?是每台服务器中都装有8个NVIDIA生产的高端独立GPU。如大家所知,由于服务器的职能特点,其实一般的服务器内部是没有“三大件”中的独立GPU,只有CPU和内存的。因为GPU的耗电量和发热量都太大了。而其擅长的计算形式又不能对服务器的常用计算需求起到太大的帮助作用。因此不太适合用在一般的服务器中。但是Facebook却为了深度学习而专门设计了这款带有8个独立GPU的服务器,甚至不惜以减少每个机架上的服务器数量来优化对深度学习程序的计算速度。可谓是下了血本。

  而互联网领域的其他大公司也没闲着,如文中所说,微软、谷歌、甚至是百度都在使用GPU、甚至开发自己的专用芯片来加速深度学习。在这些巨头们的推动下,深度学习算法的反应也是越来越快,精度也越来越高。

<上一页  1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号