侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

从概念上看看智能机器人的新范式:深度强化学习

2016-08-30 00:10
Radow
关注

  近两年机器智能取得重大突破,像围棋九段高手李世石败北Alpha Go,DeepMind团队研发的机器人在Atari多项游戏上超越人类水平。这些突破主要得益于从基于深度学习的视觉、语音、语义感知到动作反馈的激励惩罚强化训练模式。本文从概念上分析深度强化学习的要点,部分摘于ICML 2016 Tutorial里的Deep Reinforcement Learning[1]的报告。

  强化学习,即机器人根据环境里动作得到的惩罚和激励去自动调整策略。通过训练,机器人学到一组策略:在环境状态S下应采取动作A,(可)能获得最大累积奖励V。

  强化学习有丰富的交叉学科背景,包括经济学、工程学、神经科学里的博弈论、优化控制,条件反射系统。

1  2  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号