侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

从概念上看看智能机器人的新范式:深度强化学习

2016-08-30 00:10
Radow
关注

  深度学习,使用深度神经网络实现机器人的记忆,视觉感知,语音语义理解和生成。

  深度强化学习以深度学习做感知,强化学习训练策略,并且以深度神经网络作为策略载体。相比于传统的多模块组合,深度强化学习实现了从感知到控制的端到端直接训练,减少了模块间信息损失。

  最近两年在学术理论上,GoogleDeepMind团队在连续性动作控制[2],异步训练[3],训练框架[4],分布式训练[5]等都有重要突破,为智能机器人的研发奠定理论和实践基础。

  在特定任务的应用上,深度增强学习已有广泛实践尝试,例如流水线机器人。

  在集成应用上,深度强化学习在自动驾驶,聊天机器人[6][7]都有良好的前景。例如,使用分布式训练或异步训练,自动驾驶汽车可以多辆同时在各种环境学习,并且相互交换知识,加速学习过程。聊天机器人可以通过对话过程中用户的反馈来调整自己的语言表达,逐步成长。

  深度强化学习为智能机器人提供了新的计算范式:提供环境、激励和惩罚、神经网络结构即可训练得到最大化奖励的智能机器人。

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

技术文库

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号