侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

【深度】人工智能的主流之路:20年机器学习

2016-08-11 12:18
老猫
关注

  当我在1995参加了计算机科学的时候,数据科学并不存在,但我们仍然在使用许多早已存在的算法。这不仅仅是因为神经网络的回归,也可能是从那时起,就已经没有发生太多根本性的变化。至少给我的感觉是这样的。有趣的是,从今年开始,人工智能似乎终于已经成为主流。

  在云计算机,智能手机,或聊天机器人出现之前,1995年听起来像是非常痛苦的时期。但在了解过去的几年时,如果你未身处其境,感觉起来就像是很久以前的事一样。就如自我延续一样,它将一切都贴在一起,虽然已经改变很多,但与现在相比,世界没有感觉到根本不同的。

  坚持不懈从事计算机科学

  计算机科学从未像现在一样未接近主流。后来,随着2000年左右的第一个网络泡沫。有些人甚至质疑我学习计算机科学的选择,因为编程计算机很显然变得非常容易,再也不需要专家了。

  事实上,人工智能是我学习电脑科学的主要原因之一。将它作为一种建设性的方法来理解人类思想的想法,对我来说非常耐人寻味。前两年我都在训练,以确保自己有足够的数学水平来解决道路上的阻碍,且最终上了第一堂AI课(由JoachimBuhmann授课),那时波恩大学的教授SebastianThrun正准备离开美国。我得查看我参加了他的哪一个演讲周期,他在计算机视觉中有两个讲座,一个是模式识别(多数是旧版本的Duda&Hart的书中知识),一个是信息理论(类似于Cover和Thomas的书)。材料是非常有趣的,但也有点令人失望。正如我现在所知,人们停止了AI方面象征性的工作,不再坚持用更多的统计方法来学习,这种方法学习的本质是,基于有限数量的观察减少选择正确函数的问题。计算机视觉讲座,甚至学习的更少,且更依赖于明确的物理建模,以获得正确的估计,例如,从视频中重建运动。那时的方法比现在更加生理化和物理化。虽然神经网络存在,但每个人都很清楚,他们只是“另一种函数逼近。”除了RolfEckmiller,和另一个我曾经在其手下工作过的教授之外,每个人都这么想。Eckmiller在“神经计算”在某种程度上比传统的计算好得多前提下建立了他的整个实验室。这可以追溯到NIPS有着完整的路径致力于研究神经元的生理学和工作机制的日子,甚至有人认为在我们的大脑中有着本质性差异东西发生,也许是在量子水平,这增加了人的心灵,这种差异是研究真正智能机器的一大阻碍。

  虽然Eckmiller很善于推销他的观点,但他的大部分工作人员都庆幸脚踏实地。也许这是一件非常德国化的事情,但每个人都很关心这些计算模型到底能不能做到,这也是研究中一直困扰我的问题。我毕业于2000十月,发表了相当牵强的硕士论文,试图在学习和努力优化问题之间建立联系,然后开始了我的博士论文,并坚守在该领域进行研究直到2015。

  机器学习的研究方法很多,但解决的本质问题基本一样

  虽然一直试图证明行业的相关性,当它是一个长时间的非常学术性的努力,且社区是相当封闭的。有一些个人成功的故事,例如手写字符识别,但许多公司在机器学习方面的研究失败了。我记得有一个公司叫BeowulfLabs和NIPS,他们用一个视频到处去招聘人才,承诺要成为下一个“mathtopia”。在本质上,这是DeepMind的故事,招聘一群优秀的研究人员,然后希望它会起飞。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号