侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

英特尔人工智能的全局观:专注于技术,收获于未来

2016-09-21 08:54
野明月
关注

  如果说过去10年是互联网颠覆商业模式的10年,那么无疑未来的10年人工智能则有极大的可能接棒互联网,成为新的风口并产生新的商业机会。

  不过,眼下的人工智能行业呈现出了庞大和无序,从哪里落地,哪里将是突破口?业界一直在不断的探索和思考。对此,我的观点是,真正能够肩负起推动人工智能进步和落地的公司,必然是在互联网、云计算、大数据和物联网等领域拥有成熟技术架构体系的巨头公司。

  那么,在人工智能时代渐行渐近的今天,英特尔有机会成为这个角色的扮演者吗?关键的是,英特尔对人工智能有何所思所想?在技术领域又有哪些新的投入和布局呢?

  人工智能时代的角色定位

  如今放眼全球,人工智能确实都受到了前所未有的重视。科技巨头们甚至将人工智能视为推动下一次产业革命的关键技术,纷纷在人工智能领域加大投入。

英特尔销售与市场事业部副总裁夏乐蓓

  这背后的重要原因和驱动力在于,云计算技术解决了计算资源的获取,大数据技术产生了更多数据资产,机器学习、深度学习技术大幅度提升了系统效率,这就形成了一个完整的服务于人工智能行业的技术链条。

  新任英特尔中国研究院院长宋继强,就以机器人的发展过程为例,阐述了人工智能在这个过程当中的演进阶段和技术所起到的价值作用。

  第一阶段是互联,主要是指过去机器人是固定的,通过联网后更多的信息来源于网络,同时产生更多的信息交互,这时候机器就不再孤立。

  第二阶段是智能,主要是指通过软件实现机器的初步感知,让机器和人之间形成更高级的交互,比如做图像和语音识别等等,机器在这个阶段有了一定的“个性化”。

  第三阶段是自主,主要是指机器对人有了更深入的理解,包括怎么知道人现在是什么情绪,并且做一些推理和规划,然后做相应的处理和反馈,这是机器演进的终极阶段,它必须是可预测和可靠的。

  宋继强认为,在构造基于人工智能的自主机器里面有三个关键的维度,第一步是感知,二是认知,三是行动,要把这三个步骤连贯起来形成一个闭环。

  显然,要形成这样的闭环,技术的挑战由此可见,包括通过各式各样的传感器数据进入到机器中,机器需要第一时间做出反馈和处理,这是终端可见的困难。

  与此同时,在看不见的后端处理过程中的挑战,则包括机器需要大量的计算能力和学习能力,应该说目前已初步有了结果,比如字符识别、语音识别,图像识别等,但也还未完全穷尽,而更高维度的认知探索,业界现在才刚刚开始而已。

  对此,英特尔销售与市场事业部副总裁夏乐蓓认为,人工智能实际是高性能计算在现在和未来的进一步延展和进化,这是英特尔传统的优势领域。对英特尔而言,进入人工智能领域是非常自然的选择,也是技术上的自然演进。

  在夏乐蓓看来,当下最热门的机器学习,乃至更细分的深度学习,只是人工智能当中一个新生但发展速度很快的领域,也是英特尔投入最大的领域。可以这么理解,机器学习是实现人工智能的方法,深度学习是实现机器学习的技术。因此,对英特尔而言,人工智能、机器学习和深度学习是相辅相成的。

  以机器学习为例,它主要是进行培训和评分。培训过程通过数据推动制定决策,并推动譬如汽车或机器人内部的自动化智能;然后是评分过程,即机器完成学习后,如何将其投入实际应用?因此,无论是学习还是评分,都需要强大的计算能力,而这正是英特尔所擅长的。

  综上所述,其实就不难理解英特尔在人工智能的角色定位了,那就是“IA for AI”。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号