侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

黄仁勋对人工智能的6个总结:GPU怎样催化AI计算

2016-09-14 09:35
铁马老言
关注

  2016年9月13日消息,NVIDIA在北京举办了GPU技术大会(GPU Tech Conference),这也是GTC第一次在国内举办。在这次大会上,NVIDIA发布了TeslaP4、P40深度学习芯片,此外黄仁勋也在北京与数以万计的AI、游戏行业的开发者们分享了他对GPU和未来计算的认知。以下内容是根据黄仁勋在GTC China 2016上的演讲实录整理。

  一、4年以前,Alex Net第一次带来了深度学习的爆发

  2012年一个年轻的研究员叫Alex Krizhevsky。在多伦多大学AI实验室,他设计了一个可以学习的软件,这个软件靠自己就能进行视觉识别。深度学习这个时候已经发展了一段时间,可能有20年。

  Alex所设计的这个网络,它有一层一层的神经网络,包括卷积神经网络、激发层、输入和输出,可以进行区分。这样一个神经网络可以学会识别影像或者是规律。深层神经网络所带来的结果是它会非常有效,会超出你的想象,但是它进行训练需要的计算资源超过了现代计算机的能力,它需要几个月的时间去训练一个网络才能真正地识别图像。

  Alex当时的看法是,有一个叫做GPU的新型处理器,通过一种叫CUDA的计算模式,可以适用于并行计算,用于非常密集的训练。2012年他当时设计了叫Alex的网络,提交给了一个大规模计算视觉识别大赛,是一个全球的竞赛,并且赢得了这个大赛。

  AlexNet战胜了所有由其他计算视觉专家所开发的算法。Alex当时只用两个NVIDIAGTX580,在通过数据训练了几天后,AlexNet的结果和质量引起关注。所有搞计算视觉的科学家,所有的AI科学家都非常关注。在2012年,AlexKrizhevsky启动了计算机深度学习的基础,这是现代AI的一个大爆炸。他的工作和成果在全世界引起了很大反响。

  我相信那个时刻会被记住,因为它确实改变了世界。之后有很多研究开始围绕深度学习进行。2012年斯坦福大学的吴教授(吴恩达)和我们开发了一个非常大规模的GPU配置用于深度学习的训练,很快在三年之后每一年都会有新的网络出来,能够不断地战胜其他方案获得更好的记录。

1  2  3  4  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号