侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

人工智能芯片起底——CPU的历史终结?

2017-02-16 08:54
小伊琳
关注

目前,谷歌、Facebook、微软、Twitter和百度等互联网巨头,都在使用GPU作为其深度学习载体,让服务器学习海量的照片、视频、声音文档,以及社交媒体上的信息,来改善搜索和自动化照片标记等各种各样的软件功能。而某些汽车制造商也在利用这项技术开发无人驾驶汽车。

不过,由于GPU的设计初衷是为了应对图像处理中需要大规模并行计算。因此,根据乐晴智库介绍,其在应用于深度学习算法时有数个方面的局限性:

第一,应用过程中无法充分发挥并行计算优势。深度学习包含训练和应用两个计算环节,GPU在深度学习算法训练上非常高效,但在应用时一次性只能对于一张输入图像进行处理,并行度的优势不能完全发挥。

第二,硬件结构固定不具备可编程性。深度学习算法还未完全稳定,若深度学习算法发生大的变化,GPU无法灵活的配置硬件结构。

另外,在能耗上面,虽然GPU要好于CPU,但其能耗仍旧很大。

备受看好的FPGA

FPGA,即现场可编辑门阵列,是一种新型的可编程逻辑器件,由于其具有静态可重复编程和动态在系统重构的特性,使得硬件的功能可以像软件一样通过编程来修改。

FPGA作为人工智能深度学习方面的计算工具,主要原因就在于其本身特性:可编程专用性,高性能,低功耗。

北京大学与加州大学的一个关于FPGA加速深度学习算法的合作研究。展示了FPGA与CPU在执行深度学习算法时的耗时对比。在运行一次迭代时,使用CPU耗时375毫秒,而使用FPGA只耗时21毫秒,取得了18倍左右的加速比。

根据瑞士苏黎世联邦理工学院(ETHZurich)研究发现,基于FPGA的应用加速比CPU/GPU方案,单位功耗性能可提升25倍,而时延则缩短了50到75倍,与此同时还能实现出色的I/O集成。而微软的研究也表明,FPGA的单位功耗性能是GPU的10倍以上,由多个FPGA组成的集群能达到GPU的图像处理能力并保持低功耗的特点。

根据英特尔预计,到2020年,将有1/3的云数据中心节点采用FPGA技术。

不可估量的ASIC

ASIC(Application Specific Integrated Circuits,专用集成电路),是指应特定用户要求或特定电子系统的需要而设计、制造的集成电路。ASIC用于专门的任务,比如去除噪声的电路,播放视频的电路,但是ASIC明显的短板是不可更改任务。但与通用集成电路相比,具有以下几个方面的优越性:体积更小、功耗更低、可靠性提高、性能提高、保密性增强、成本降低。

从算力上来说,ASIC产品的计算能力是GK210的2.5倍。功耗上,ASIC功耗做到了GK210的1/15。

当然ASIC是能效最高的,但目前,都在早期阶段,算法变化各异。想搞一款通用的ASIC适配多种场景,还是有很多路需要走的。但从比特币挖矿机经历的从CPU、GPU、FPGA到最后ASIC的四个阶段来推论,ASIC将是人工智能发展的重要趋势之一。另外,在通信领域,FPGA曾经也是风靡一时,但是随着ASIC的不断发展和蚕食,FPGA的份额和市场空间已经岌岌可危。

据了解,谷歌最近曝光的专用于人工智能深度学习计算的TPU,其实也是一款ASIC。


<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号