侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

高盛AI生态报告:人工智能可解决药物研发等难题

2017-02-24 08:45
络遇
关注

数据的聚合,不断改进的数据捕获技术,以及独立医院的不断减少等,已经为数据的大规模利用创造了一个前所未有的机遇。这一切也将提高机器学习算法和人工智能的各项功能,以在医疗领域的各个方面改善速度、降低成本和提高精度。

总部设在伦敦的谷歌DeepMind正与英国国民健康服务(National Health Service, NHS)合作开发一款旨在监测肾脏疾病患者的APP,以及一个前身名为“患者抢救”、旨在支持诊断决策的平台。

任何AI/ML系统的关键都是海量的数据,因此DeepMind和NHS达成了一个数据共享协议,NHS将为DeepMind提供动态的新数据流和历史数据,以用于训练DeepMind的算法。

只有有了海量的数据,才有可能对临床数据进行实时分析。当然,如果DeepMind可以随时有效获取患者数据,它所能提供的见解将远远超出肾脏疾病的范围。

痛点何在?

药物发现与开发。医疗领域的重要痛点之一,是药物发现与开发的时间和成本。根据塔夫特药物发展研究中心( Tufts Center for the study of Drug Development )的数据,一款新药的面市从药物发现到获得FDA批准平均大约需要97个月。

虽然对专业技术的持续聚焦可以帮助改善时间跨度,但新药研发的成本却仍在持续增加。德勤的数据显示,自2010年以来,12家主要制药公司的获批药物开发成本已经增加了33%,至约每年16亿美元。

研发回报。生物制药研发的生产力至今仍然是一个充满争议性的话题。开发一款成功药物的成本持续增加,但由于报销制度中的不利因素、患者量的降低和企业间的竞争等,新药研发的收入回报环境也不容乐观。

虽然我们预计2010 - 2020年的研发回报相对与2000-2010年会有所提高,但实际上二者之间的变化微不足道。此外,影响研发回报最重要的不利因素之一在于那些失败的研发产品,特别是那些已经达到后期试验阶段的药物;这些药物的成本每年估计就占到了400亿美元以上。

医生/医院的效率。医疗领域的一项特别挑战,依然是医生的医疗实践明显滞后于新药和新治疗方法的获批。因此,许多医疗领域的机器学习和人工智能专家正不断鼓励主要的医疗服务供应商,让在其工作流程中融入现代的机器学习工具,以使其充分利用收集到的和已发表的海量医疗数据存储。

机器学习和人工智能可有望降低药物发现和医疗实践之间的时间差;与此同时,它们还能对治疗进行优化。例如,从北美放射学会2009年对肝胆放射的研究可见,23%的第二意见会改变诊断结论,而这也是专注于医学影像的机器学习公司有望能解决的领域。此外,那些致力于利用机器学习在基因组层面进行疾病判断的公司,例如Deep Genomics等,正帮助供应商精确定位,以提供更有效和更有针对性的治疗。

  目前开展新药研发业务的通行方法为何?

目前,药物发现和开发业务是一个极为漫长的研究、测试和审批过程,持续的时间可达10年以上。据塔夫特药物发展研究中心报道,一款药物从第一阶段推进到通过FDA审批,平均需要花费96.8个月的时间。

新型治疗方法的研发之所以是一个独特的挑战,不仅是因为它所需要的漫长时间,而且还由于整个开发过程中各个阶段的POS都十分低。

<上一页  1  2  3  4  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号