侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

谷歌公布了TPU细节,人工智能业界怎么看?

2017-04-08 08:56
逆光飞舞
关注

我们对于谷歌的TPU并不陌生,正是它支撑了AlphaGo强大快速的运算力,但谷歌一直未曾披露其细节,使得TPU一直保有神秘感。

美国当地时间4月5日,谷歌终于打破了沉寂,发表官方博客,详细介绍了TPU的方方面面。相关论文更是配以彩色的TPU模块框图、TPU芯片布局图、TPU印制电路......等等,可谓图文并茂,称其为“设计教程”也不为过。不出意料,这之后将会涌现一大批仿效者。

论文中还给出TPU与其它芯片的性能对比图,称“TPU处理速度比当前GPU和CPU要快15到30倍”,有人赞叹TPU的惊人性能,但也有人对此种“比较”表示质疑,因其拿来的比较对象并非市场里性能最好的。

这篇论文有哪些亮点?争议点在哪里?谷歌公布TPU细节会对业界产生什么影响?本文要解答这几个问题。

谷歌为什么要造TPU?

这篇论文的题目为:《数据中心的TPU性能分析》(In-Datacenter Performance Analysis of a Tensor Processing Unit),共同作者多达70人,领衔的第一作者是硬件大牛Norman Jouppi。

Jouppi在接受外媒Wired采访时说,谷歌一开始曾经考虑要用FPGA,但是后来经过实验发现,这种芯片无法提供理想中的速度。

“可编程芯片制造费用太高,我们的分析认为,FPGA芯片并不比GPU跑得快。”

最终,他们将目光放到ASIC(专用集成电路,一旦设计制造完成后电路就固定了,无法再改变)上,TPU就是一种ASIC。在接受外媒The Next Platform采访时,Jouppi表示TPU可以适用于现存的各种神经网络模型,从图像识别的CNN到语音识别的LSTM,都适用。

“TPU跟CPU或GPU一样是可编程的。TPU 不是专为某一个神经网络模型设计的;TPU 能在多种网络(卷积网络、LSTM模型和大规模全连接的神经网络模型)上执行CISC 指令。”

谷歌已经使用TPU已经两年时间,将其应用在各种领域的任务里,包括:谷歌图像搜索(Google Image Search)、谷歌照片(Google Photo)、谷歌云视觉API(Google Cloud Vision API)、谷歌翻译以及AlphaGo的围棋系统中。

1  2  3  下一页>  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号