侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

一文读懂“智能制造”在美国、德国、日本有啥不同?

  德国

  “通过设备和生产系统的不断升级,将知识固化在设备上”

  德国的先进设备和自动化的生产线是举世闻名的,可以说在装备制造业的实力上有着傲视群雄的资格。同时德国人严谨的风格,以及其独特的“学徒制”高等教育模式,使得德国制造业的风格非常务实,理论研究与工业应用的结合也最紧密。然而德国也很早就面临劳动力短缺的间题,在2015年各国竞争力指数的报告中,劳动力是德国唯一弱于创新驱动型国家平均水平的一项。因此,德国不得不通过研发更先进的装备和高度集成自动的生产线来弥补这个不足。

  德国的制造业解决问题的逻辑是:发生问题→人(或装备)解决问题→将解决问题的知识和流程固化到装备和生产线中→对相似问题自动解决或避免。

  举个比较直观的例子来比较日本和德国解决问题方式的不同:如果生产线上经常发生物料分拣出错的现象,那么日本的解决方式很有可能是改善物料辨识度(颜色等)、员工训练,以及设置复查制度。而德国则很可能会设计一个射频识别(RFID)扫码自动分拣系统,或是利用图像识别+机械手臂自动进行分拣。

  又比如,德国很早就将误差补偿、刀具寿命预测、多轴同步性算法、主轴震频补偿等解决方式以功能包的形式固化到了机床中,因此即便是对制造工艺和操作并不熟练的工人也能够生产出可靠的产品。也正是这个原因成就了德国世界第一的装备制造业大国地位。

  除了在生产现场追求问题的自动解决之外,在企业的管理和经营方面也能够看到其尽力减少人为影响因素的努力。比如最好的ERP、MES、APS等软件供应商都来自德国,大量的信息录入和计划的生成及追溯通过软件自动完成,尽量减少人为因素带来的不确定性。

  然而,德国同样对数据的采集缺少积累,因为在德国的制造系统中对故障和缺陷采用零容忍的态度,出现了问题就通过装备端的改造一劳永逸地解决。在德国人的意识中不允许出现问题,也就自然不会由问题产生数据,最直接的表现就是找遍德国的高校和企业几乎没有人在做设备预诊与健康管理(PHM)和虚拟测量等质量预测性分析。另外由于德国生产线的高度自动化和集成化,使得其整体设备效率(OEE)非常稳定,利用数据进行优化的空间也较小。

  德国依靠装备和工业产品的出口获得了巨大的经济回报,因为产品优秀的质量和可靠性,使得德国制造拥有非常好的品牌口碑。然而德国近年来也发现了一个问题,那就是大多数工业产品本身只能够卖一次,所以卖给一个客户之后也就少了一个客户。同时,随着一些发展中国家的装备制造和工业能力的崛起,德国的市场也在不断被挤压。因此,在2008—2012年的5年时间里,德国工业出口几乎没有增长。由此,德国开始意识到卖装备不如卖整套的解决方案,甚至同时如果还能够卖服务就更好了。

  于是,德国提出的工业4.0计划,其背后是德国在制造系统中所积累的知识体系集成后所产生的系统产品,同时将德国制造的知识以软件或是工具包的形式提供给客户作为增值服务,从而实现在客户身上的可持续的盈利能力。这一点从德国的工业4.0设计框架中能够十分明显地看到,整个框架中的核心要素就是“整合”,包括纵向的整合、横向的整合和端到端的整合等,这简直太像德国制造体系的风格了,既是德国所擅长的,也为其提供增值服务提供了途径。所以第四次工业革命中德国的主要目的是利用知识进一步提升其工业产品出口的竞争力,并产生直接的经济回报。

  美国

  “从数据和移民中获得新的知识,并擅长颠覆和重新定义问题”

  与日本和德国相比,美国在解决问题的方式中最注重数据的作用,无论是客户的需求分析、客户关系管理、生产过程中的质量管理、设备的健康管理、供应链管理、产品的服役期管理和服务等方面都大量地依靠数据进行。这也造成了20世纪90年代后美国与日本选择了两种不同的制造系统改善方式,美国企业普遍选择了非常依赖数据的6-sigma体系,而日本选择了非常依赖人和制度的精益管理体系。

  中国的制造企业在2000年以后的质量和管理改革大多选择了精益体系这条道路,一方面因为中国与日本文化的相似性,更多的还是因为中国企业普遍缺乏数据的积累和信息化基础,这个问题到现在也依然没有解决。

  除了从生产系统中获取数据以外,美国还在21世纪初提出了“产品全生命周期管理(PLM)”的概念,核心是对所有与产品相关的数据在整个生命周期内进行管理,管理的对象即为产品的数据,目的是全生命周期的增值服务和实现到设计端的数据闭环。

  数据也是美国获取知识的最重要途径,不仅仅是对数据积累的重视,更重要的是对数据分析的重视,以及企业决策从数据所反映出来的事实出发的管理文化。从数据中挖掘出的不同因素之间的关联性、事物之间的因果关系,对一个现象定性和定量的描述和某一个问题发生的过程等,都可以通过分析数据后建立的模型来描述,这也是知识形成和传承的过程。

  除了利用知识去解决问题以外,美国也非常擅长利用知识进行颠覆式创新,从而对问题进行重新定义。例如美国的航空发动机制造业,降低发动机的油耗是需要解决的重要问题。大多数企业会从设计、材料、工艺、控制优化等角度去解决这个问题,然而通用电气公司(GE)发现飞机的油耗与飞行员的驾驶习惯以及发动机的保养情况非常相关,于是就从制造端跳出来转向运维端去解决这个问题,收到的效果比从制造端的改善还要明显。这也就是GE在推广工业互联网时所提出的“1%的力量(Powerof1%)”的依据和信心来源,其实与制造并没有太大的关系。所以美国在智能制造革命中的关键词依然是“颠覆”,这一点从其新的战略布局中可以清楚地看到,利用工业互联网颠覆制造业的价值体系,利用数字化、新材料和新的生产方式(3D打印等)去颠覆制造业的生产方式。

<上一页  1  2  3  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号