小觅双目深度相机开源vSLAM算法用于无人驾驶
2016年以来,无人驾驶创业公司不断涌现,如今正面临着商业化探索的关键时期。接下来,无人驾驶的行驶方式等待检验、量产中亦有诸多难题等待解决。前不久,李开复还曾公开表示,像Waymo一样的自动驾驶,即人可以不在驾驶位上,还需要很久,但是以后的车没法人机协作。
他还进一步解释道:“我们也可以认为以后无人驾驶达到了一定的程度,它就会通过物联网彼此交流,比如说一辆车可以告诉另外一辆车,说我爆胎了,请你们让开一点。自动驾驶将取代人类驾驶。当然达到这个程度还有20年,30年还是40年,有争议存在。”
虽然在商业落地的过程中,无人驾驶的生态圈还面临众多难点。但大多数人依然支持“自动驾驶是人工智能改变世界的光辉起点”的这一观点,对该领域的探索也不会止步。这其中,SLAM的应用至关重要。
SLAM(同步定位与地图构建),是指运动物体根据传感器的信息,一边计算自身位置,一边构建环境地图的过程,解决机器人等在未知环境下运动时的定位与地图构建问题。目前,SLAM在无人驾驶领域的用途包括传感器自身的定位,以及后续的路径规划、运动性能、场景理解等。
由于传感器种类和安装方式的不同,SLAM 的实现方式和难度会有一定的差异。按传感器来分,SLAM 主要分为激光 SLAM 和 vSLAM 两大类。早在 2005 年的时候,激光 SLAM 就已经被研究的比较透彻,直到目前,激光 SLAM仍然是最稳定、最主流的定位导航方法。
随着计算机视觉的迅速发展,vSLAM(基于视觉的定位与建图)因为信息量大,适用范围广等优点逐渐受到广泛关注。基于视觉的 SLAM 方案目前主要有两种实现路径,一种是基于 RGBD 的深度摄像机,比如英特尔的Realsense和小觅深度相机系列产品;还有一种就是基于单目、双目或者鱼眼摄像头的。
基于深度相机的 SLAM ,跟激光 SLAM 类似,通过收集到的点云数据,能直接计算障碍物距离,相比基于单目、鱼眼相机的 vSLAM 方案,需要利用多帧图像来估计自身的位姿变化,再通过累计位姿变化来计算距离物体的距离,并进行定位与地图构建,基于深度相机的 SLAM 方案在无人驾驶领域应用更为普遍。
小觅双目摄像头深度版(MYNT EYE Depth)采用“视觉+结构光+惯性导航”融合的方案,内置深度计算芯片,无需上位机即可输出深度。相较固态激光、单目相机、视觉相机、结构光相机和ToF相机等单一深度传感器方案,“视觉+结构光+惯性导航”融合的方案是适用场景更广泛且更具性价比的3D传感器融合解决方案。
小觅双目摄像头深度版提供120°FOV和50°FOV两种视角方案给客户选择,120°FOV版本提供更广阔的深度识别范围,50°FOV版本则具备更高精度水平和识别深度,识别距离可达15m,精度可达毫米级,为室外作业环境提供了更多可能。
总的来说,想让用户在AR/VR、机器人、无人机、无人驾驶领域体验加强,还是需要更多SLAM前沿技术做支持。未来新型传感器的出现也会不停地为SLAM注入活力,在降低SLAM算法难度的同时,也会给SLAM的技术格局带来许多变化。
图片新闻
最新活动更多
-
11月22日立即报名>> 【线上&线下同步会议】领英 跃迁向新 年度管理者峰会
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 2024 智能家居出海论坛
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论