侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

可解释的人工智能:四个关键行业

2019-06-10 10:01
来源: 企业网

1.医疗保健行业

对可解释人工智能的需求与人类的影响将会同步上升。因此,医疗保健行业是一个良好的起点,因为它也是人工智能可能非常有益的领域。

Kinetica公司首席执行官Paul Appleby说,“使用可解释的人工智能的机器可以为医务人员节省大量时间,使他们能够专注于医学的解释性工作,而不是重复性任务。他们可以同时给予每位患者更多的关注。其潜在的价值很大,但需要可解释的人工智能提供的可追溯的解释。可解释的人工智能允许机器评估数据并得出结论,但同时给医生或护士提供决策数据,以了解如何达成该结论,因此在某些情况下得出不同的结论,这需要人类解释其细微差别。”

SAS公司执行副总裁兼首席信息官Keith Collins分享了一个特定的实际应用程序。他说,“我们目前正在研究医生使用人工智能分析来帮助更准确地检测癌症病变的案例。该技术可以充当医生的虚拟助手,并解释了核磁共振成像(MRI)图像中的每个变量如何有助于识别可疑区域是否有可能致癌,而其他可疑区域则没有。”

2.制造行业

在诊断和修复设备故障时,现场技术人员通常依赖“部落知识”。

IBM Watson物联网高级产品经理Heena Purohit指出,在制造行业中,现场技术人员在诊断和修复设备故障时往往依赖“部落知识”,也有一些行业也是如此。部落知识的问题在于团队成员变动频繁,有时甚至是显著的:人员流动频繁,他们的专业知识也会改变,而这些知识并不总是被记录或转移。

Purohit说,“人工智能驱动的自然语言处理可以帮助分析非结构化数据,如设备手册、维护标准,以及例如历史工作订单、物联网传感器读数和业务流程数据等结构化数据,以提出技术人员应遵循的规定性指导的最佳建议。”

这并不能消除部落知识的价值,也没有削弱人类的决策制定。相反,它是一个迭代和交互的过程,有助于确保以可操作的方式存储和共享知识。

Purohit解释道,“在这种情况下,我们向用户展示了由人工智能驱动的多种可能的维修指导建议选项,并且每个响应的置信区间都是可能的答案。用户可获得每个选项,这有助于持续学习过程,并改进未来的建议。这样,我们不会只给用户单一的选择,我们允许用户在各个选项之间作出明智的决定。对于每个建议,我们还向用户显示了知识图输出这个高级功能,以及在人工智能培训阶段使用的输入,以帮助用户了解有关为什么结果被优先排序和相应评分的参数。”

3.保险行业

就像医疗保健行业一样,人工智能对于保险行业可能会产生深远的影响,但信任、透明度、可审计性是绝对必要的。

Cognitivescale公司创始人兼首席技术官Matt Sanchez说:“人工智能在保险领域有着许多潜在的使用案例,例如客户获取、代理生产率、索赔预防、承保、客户服务、交叉销售、政策调整,以及提高风险和合规性。”他指出,埃森哲公司最近的一项调查发现,大多数保险业高管预计人工智能将在未来三年内彻底改变其行业。

但这绝对是一个有相当大影响的领域。只需考虑关键的保险类别就可以感受到这些影响,例如生活、业主、健康、员工补偿等等。Sanchez表示,可解释的人工智能将非常重要;建议人们思考这些问题,而每个问题也适用于其他领域:

·人工智能能否解释它是如何获得这种洞察力或结果的?

·应用了哪些数据、模型和处理来获得其结果?

·监管机构可以访问并了解此人工智能的工作原理吗?

·谁在访问什么以及何时访问?

4.自动驾驶汽车

可解释的人工智能最终应该是使人工智能提供最大的价值。

PubNub公司首席技术官兼联合创始人Stephen Blum表示,“了解人工智能服务为什么做出某种决定,或者了解是如何获得某种洞察力,这对于人工智能从业者更好地整合人工智能服务至关重要。例如自动驾驶汽车的人工智能系统将如何构建与车辆交互的方式,这对乘坐人员来说将面临很大的风险,因为这意味着其决定生死攸关。”

事实上,自动驾驶汽车无疑是人工智能发挥重要作用的新兴领域,可解释的人工智能将是成为其最重要的领域。

Kinetica公司首席执行官Appleby解释了这种情况的重要性。他说,“如果一辆自动驾驶汽车发现自己处于不可避免的危险境地时,应该采取什么措施?优先保护乘客却将行人置于危险之中?还是为了避免撞到行人而危及乘客安全?”

因此,获得这些问题的答案并不简单。但这将给出一个非常直接的结论:人工智能的黑盒模型在这种情况下不起作用。无论对于乘客还是行人,都必须解释清楚,更不用说汽车制造商、公共安全官员等相关人员。

Appleby说,“我们可能对自动驾驶汽车的响应并不认同,但我们应该提前了解它所遵循的道德优先事项。通过企业内部建立的数据治理,汽车制造商可以通过跟踪和解释模型从决策点A到Z点的方式来跟踪数据集,从而使他们更容易评估这些结果是否符合他们采取的道德立场。同样,乘客也可以决定他们是否愿意乘坐做出某些决定而设计的车辆。”

这可能是一个严峻的现实,但同样有一个基本原则,这包括那些不是生死攸关的场景。可解释的人工智能是改进和优化的人工智能技术,这是IT领导者思考人工智能的另一种方式。

Blum说,“如果人工智能系统出错,其构建者需要理解为什么会这样做,这样才能改进和修复。如果他们的人工智能服务在黑盒中存在并运行,他们就无法了解如何调试和改进它。”

<上一页  1  2  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号