中国AI芯“觉醒”的五年
巨头种子遇变数
2015年左右地平线和云知声开始大量投入兵力,寒武纪虽创立最晚,但原始积累已早早在中科院计算所完成。
2014年,身在中国科学院计算技术研究所的陈云霁、陈天石课题组就提出了深度学习处理器指令集DianNaoYu,被计算机体系结构领域顶级国际会议ISCA2016所接收,其评分排在所有近300篇投稿的第一名。
那时的模拟实验表明,采用DianNaoYu指令集的寒武纪深度学习处理器相对于x86指令集的CPU有两个数量级的性能提升。
陈云霁、陈天石兄弟开始崭露头角。
陈云霁9岁上中学,14岁进入中科大少年班,24岁取得中科院计算所博士学位,29岁晋升为研究员,33岁荣获中国青年科技奖和中科院青年科学家奖。兄弟二人平步青云,循着同样的步伐直到再次“交汇”。
2008年,陈云霁兄弟开始联手打造AI芯片,利用各自的科研优势攻关,在此之前,陈云霁已经跟随中国“龙芯之父”胡伟武十余年。胡伟武带领团队在2016年研制成功的龙芯3A3000处理器已经用在了北斗二代卫星。
同一年,寒武纪科技公司成立并顺势推出了首款可商用的深度学习处理器寒武纪1A,这个速度早于业界。
陈天石曾说,寒武纪只有小几百人的团队,已经做了很多事情,全球第一款终端AI处理器落地、全球第一款多核终端AI处理器落地、中国第一颗云端人工智能芯片落地、三代终端IP产品发布。
他说难以想象AI芯片领域不诞生新巨头,这显示着寒武纪的勃勃野心。但很快他们需要面对的是华为自己做芯片,外界指“抛弃”寒武纪的质疑。
陈天石回应华为发布的峰值性能16T的昇腾310和寒武纪发布的MLU100没有竞争,场景不同,峰值性能也不同,作为一家开放独立的芯片公司,要具备宽广的视野。
不知道这是否是他的心里话,但至少在前往巨头的路上,变数多了起来。
AI芯片是时代机遇,更是技术所需,在这波崛起潮水之中,最早开始投入研发的还属海思,但一直被华为“雪藏”。
早在2004年,华为全资子公司海思半导体逐渐登上历史舞台,他们起初主攻基带芯片、视频编码芯片和为自家手机打造的麒麟芯片,而与AI芯片扯上关系还要从2017年说起。
2017年9月初,华为在柏林发布了麒麟970,宣称这是“全球第一枚手机AI芯片”,其中集成了寒武纪1A处理器的IP作为其核心AI处理单元。次年8月,麒麟980同样搭载了寒武纪1A的优化版本。
不过,从2018年10月开始,寒武纪迎来坏消息,“客户”华为推出全栈全场景AI解决方案和昇腾910、昇腾310两款AI芯片,情理之中,意料之外。
海思成增长率最高的芯片设计公司
在绝地求生之前,华为创始人任正非就计划在芯片上投入四亿美元和两万人。23年以来,海思的舵手何庭波从工程师直至总裁,她历经微米到纳米,再到现在的5纳米技术。这些积淀和努力,都成为海思在AI芯片时代的强力储备,如今正在开花结实,昇腾910、昇腾310、麒麟980的下一代们正在加速度。
创造性和秩序性讲道理
寒武纪有中科院背景,海思有华为这艘巨轮作为背靠,一千多位高级半导体专家参与本身就是超级壁垒。
而团队的建设和磨合对于云知声和地平线这样的创业公司来说就没那么容易了。
从2015年开始决定做AI芯片,直到2016年中才正式步入正轨,云知声组建芯片团队经历了漫长而又艰难的磨合期。直到“关键先生”谢冠超2015年11月加入,负责整个IoT事业部,其中最重要的KPI就是造芯片。
从深圳到北京,云知声的解决方案开始迎来彻底革新。
有了带头打仗的人,但作战部队还在缓慢地招聘和打磨,令彼时的管理层最为棘手的问题是算法团队和芯片团队的“互掐”。这是软硬件结合的AI芯片必须经历的阵痛,双方在底线的边缘疯狂地相互试探。
如果是通用芯片,成本高企且有比较大的内存和存储空间,但一旦到了AI芯片,特别是边缘侧,多一点点东西都是成本的痛苦,那就希望算法团队配合裁剪。
这个时候算法团队就炸毛了,拍桌子瞪眼睛在办公室是常事,说这个东西我已经做到极致了,而且我很忙。双方争执不下,只能等老大拍板。
在老大眼里,那就是倒推,如果这款芯片成立,就必须满足资源限制的需求;算法是你给我的资源越多,我给你的性能就越好。现在要做的就是确认性能水平,然后榨干每一个空间,达成和解。
在AI芯片的研发过程之中,这是团队在每一个引擎,每一个模块,都会遇到的事情。
余凯将这个问题归结为理念冲突。招聘时有人问他,你做软件就做软件,软硬件结合是干嘛?
他认为这是打头阵必须经历的“风阻”,地平线芯片团队也在初期的相当长时间内协同工作不融洽,软件开发强调快速迭代,而硬件强调系统性的程序思维。
一个快一个慢,一个讲创造性,一个讲秩序,这两拨人有天然的对抗性。
从2015年10月,地平线第一个芯片工程师入职,第一行芯片代码敲出,开始做前端开发,经历了写代码,测试代码,画一层一层的物理实现图的过程,再到制造样片,最终在2017年8月16日点亮。同年12月20日,第一代芯片连同基于芯片开发的多个典型应用发布。
其实,一开始芯片团队自己都怀疑,“能成吗?啥啥都没有啊!”。但项目真正跑起来之后,团队的信心开始愈发坚定。
在某一个关键的节点,为了保证芯片研发进度,据说地平线算法负责人黄畅把自己锁在小会议室里,噼里啪啦写了两个星期的代码,并在门口挂了张牌子:“封闭开发中,请勿打扰”。
两个星期之后,拿着最终版本的算法架构,黄畅走出小会议室,黑眼圈深重,顶着凌乱的头发,眼里闪着光:“搞定了!”
磨合成熟的团队让地平线的芯片研发周期缩小到了22个月,不同于互联网行业的快速试错和迭代,芯片绝对错不得。余凯说,一款AI芯片研发成本超过5000万美金,这对创业公司来讲是风险极高、压力极大的事情。
图片新闻
最新活动更多
-
12月12日火热报名中>>> STM32全球线上峰会
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
-
即日-1.20限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论