人工智能在仓储情景中的应用
二、选择可参照案例
当考虑在供应链中应用人工智能的各种方案时,直接应用相应技术然后确定应用方案或许很有吸引力。但是,如果你首先分析一下公司业务面对的挑战与机遇,然后再选择相匹配的人工智能技术来解决相关问题,这样的流程会有助于你选择更有效率、更适合的应用方案。
就仓库及其运作而言,人工智能的应用应该以企业所关注并不断优化的关键性能指标(KPI)为指导(订单准确性、安全性、生产率、履行时间、设施损坏或库存准确性等)。仓库通常已经拥有大量与KPI指标相关的数据,这些都可以被人工智能应用程序用于自动完成任务或做出决策。然而,这些数据由于数据类型的原因并不能直接用于人工智能技术,并且通常分布在不同的仓库管理系统中。因此,在正式应用之前,许多人工智能应用程序需要对不同仓库管理信息系统中的数据进行整合。
下面的3个案例(生产力、设备利用率、效率)说明了人工智能在仓储运营场景中的应用潜力。虽然这些案例可能并不适用于所有仓库,但它们确实展示了企业如何将自己已有的数据整合成可以应用机器学习技术的形式。
案例一、生产力
在拣选订单的环节,所有的仓库都存在不同员工的生产力不同这一现象(有效率最高的订单拣选员也有变现一般的员工)。但是相对于使用系统引导进行拣选的仓库而言,员工在生产力方面的差异在不使用系统引导的仓库中表现更为明显。
对于那些不使用系统引导进行拣选的仓库,机器学习提供了一个可以更好推广最高效员工经验的机会,并将系统引导模式引入到所有员工的工作中。如果联系到上文提到的监督学习,最高效员工的拣选列表将作为人工智能应用的输入数据;这些员工在拣选列表中货物的顺序决策即为输出数据(基于条码扫描或其他可获取信息)。除了最短拣选距离这一指标之外,避免拥挤通常是提升生产力的另外一个重要指标。因为最佳拣选员工通常会同时考虑这两个因素,因此上面的输入输出数据库应该已包含这些信息。
基于这些精准标注的数据,机器学习算法在接收新的订单数据后案最佳原则进行归类。通过这种方式,算法可以复制最有效员工的拣选操作,并提高所有员工的生产力。
案例二、设备利用率
某一仓库一天内需要搬运的容器或托盘数量与所需的搬运设备数量之间有一定的关系。在大多数情况下,两者之间是一种线性关系。但是,某些因素(例如操作人员的技能水平或货物的混合存放等)也可能会影响到所需搬运设备的佘亮。
在这种情况下,输入数据就需要包括所有可能影响设备需求的数据(从仓库管理系统中调用的拣选订单清单以及从员工管理系统中获取的操作人员生产力水平等信息)。输出信息包括从升降搬运车管理系统中获得的搬运设备使用率信息。
基于这一精准标注的数据库,机器学习算法将可以接收未来数星期或数月的订单预测信息和现有员工的技能水平信息,进而预估出所需搬运设备的数量。升降搬运车车队经理将在同设备供应商的协商中采纳这些信息作为决策参考,以确保通过短期租赁或新设备购买的方式来确保在某一期限内获取合适数量的搬运设备进行拣选操作。
案例三、效率
一个好的货位策略应该是将高需求的SKU尽量集中放在最佳位置但同时又要适当的分散摆放,以降低拥堵程度来提高拣选效率。但由于需求的不断变化以及SKU的数量(某些仓库中可能有数千个SKU),仓库很难仅仅依靠员工来判断SKU的需求量来实现最佳存放。因此一些仓库运营商会使用货位分配软件来帮助确定SKU摆放位置。这些软件会提供操作界面允许客户修改运作规则。当接收到销售历史数据或未来销售预测信息后,软件就会推荐相应的货位策略。但是,负责软件的人员经常会依据自己的经验来修改策略,而这些经验却往往不能反应出拣选操作的真实情况。
图片新闻
最新活动更多
-
12月12日火热报名中>>> STM32全球线上峰会
-
1月8日火热报名中>> Allegro助力汽车电气化和底盘解决方案优化在线研讨会
-
即日-1.14火热报名中>> OFweek2025中国智造CIO在线峰会
-
即日-1.20限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论