侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

LeCun:赋予机器 “常识” 重新设计神经网络将是AI研究重点

2019-02-20 08:38
来源: 亿欧网

人工智能研究的进展将与硬件创新密切相关。

今天,在2019国际固态电路研讨会(ISSCC)的主旨演讲中,Facebook首席AI科学家Yann LeCun阐述了深度学习研究的进展将如何影响未来的硬件架构。他的论文题为《深度学习硬件:过去、现在和未来》(Deep Learning Hardware: Past, Present, and Future)。

并且,LeCun公开确认Facebook正在自研AI芯片,这是Facebook首次发表官方评论,证实了其在芯片领域的雄心。

LeCun表示,对DL专用硬件的需求会不断增加。动态网络、关联存储器结构以及稀疏激活等新的体系结构概念将影响未来需求的硬件体系结构类型。

“这可能要求我们重新发明电路中运算的方式,”LeCun说。今天的计算机芯片通常没有针对深度学习进行优化,即使使用不太精确的计算,深度学习也可以有效。“因此,研究人员正在尝试设计一种新的方式来更有效地表示数字。”

推进AI领域的一个关键因素,尤其是在深度学习方面,将是确保有能够支持它的硬件。

这是LeCun演讲中的一个重要议题,他在会上讨论了一份新的研究报告,概述了未来5到10年芯片厂商和研究人员需要关注的关键趋势。

他说:“无论他们建造的是什么,都将影响未来十年AI的发展。”

在会议开始之前,LeCun与Business Insider就AI领域的发展方向、它对我们日常生活中使用的设备的意义、人工智能的现状以及未来面临的最大挑战进行了讨论。以下是采访的要点。

为了改善AI性能,机器必须在能耗方面做得更好

想象有这样一个真空吸尘器,它不仅聪明到可以为你的起居室绘制地图,以便不会重复清洁同一个地方,它还能在撞到障碍物之前检测到它们。

或者想象有这样一台智能割草机,它可以在修剪草坪时智能地避开花坛和树枝。

LeCun说,这样的小设备要想实现、并流行起来,除了Facebook、Alphabet等正在投资的技术,如增强现实和自动驾驶技术,还需要有更节能的硬件。

更节能的硬件不仅对这类技术的蓬勃发展是必要的,而且对改善Facebook等公司实时识别照片和视频内容的方式也是必要的。LeCun说,要理解视频中发生的事情,将活动转录成文本,然后将文本翻译成另一种语言,以便世界各地的人们能够实时地理解,需要“巨大”的计算能力。

短期内AI将继续在智能手机中得到改进

LeCun认为,未来3年内,大多数智能手机将通过专用处理器将AI直接内置到硬件中,这将使实时语音翻译等功能在手机上更为普遍。

对于那些近年来一直密切关注智能手机行业的人来说,这可能并不意外,因为苹果、谷歌、华为等公司已经将AI更紧密地整合到自己的移动设备中, LeCun 表示,这将使“各种新应用”成为可能。

赋予机器“常识”将是未来10年AI研究的一大重点

虽然人类通常通过一般观察(general observations)来了解世界,但计算机通常被训练来执行特定的任务。举例来说,如果你想设计一种能够检测照片中的猫的算法,你必须帮助它了解猫的样子,方法是提供给它一个巨大的数据集,其中可能包括数千张标记有猫的照片。

但LeCun认为,未来十年,推动AI前进的圣杯在于完善一种称为自监督学习(self-supervised learning)的技术。换句话说,使机器能够通过数据了解世界是如何运转的,而不仅仅是学习如何解决一个特定的问题——比如识别猫。

LeCun表示:“如果我们真的训练(算法)做到这一点,那么机器捕捉上下文并做出更复杂决策的能力将会取得重大进展。”他补充说,这样的技术目前只对文本有效,对视频和图像仍然无效。

这样的突破可能是Facebook等公司需要的,用以改进其平台上的内容审核,尽管现在还不知道这样的解决方案何时会出现。LeCun说:“这不是一蹴而就的事情。”

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

文章纠错
x
*文字标题:
*纠错内容:
联系邮箱:
*验 证 码:

粤公网安备 44030502002758号