阿里产业AI:三驾马车、一个飞轮
产业AI应用场景
接下来我会挑一些具体场景,看看产业AI在现实当中能够产生怎样的价值。
首先来看交通领域,交通可能是每一个老百姓都能自己感受到的,而且是很多城市的领导者非常头痛的一个问题。解决交通拥堵问题之前,其实管理者更感兴趣,也更加头大的事情就是弄清楚这个城市到底有多少辆车,比如此时此刻在北京有多少辆车在跑,有多少辆车是停在车库里面。
这些数据其实在很多城市是是很难拿到的,统计这些数据并不像大家想像的那么简单。我们要想弄清楚一个城市当中实时有多少辆车,一定要把城市里与交通相关的数据相应地进行汇聚、融合、加工和相应的计算,才能建立模型,得到此时此刻在北京有多少辆车在跑。这些数据对于交通的决策者而言,可以作为重要的参考因素,去安排警力以及相应的城市建设规划。
有了整个城市交通数据以后,另外一个非常有趣的点就是交通的效率。其实交通效率是直接被红绿灯所指挥的,现在中国很多城市的红绿灯基本上都是由每一个路口前面埋的地感线圈和感应器控制的。但是大家也知道,中国很多城市,地感线圈可能会被工程车辆、重型车辆压坏,损坏之后这些感应器就不灵了。中国其实有很多红绿灯基本上处于一种半盲状态,这种半盲的状态如何指挥中国这么复杂的混合交通,让交通的效率达到最高?其实这是很难做到的。
如果城市管理者把整个城市的数据进行汇聚,就会知道城市有多少车,而且知道这些车相应的运动轨迹,所有的模式特点,那么就可以利用这些数据,以及摄像头实时看到的数据去实时地驱动信号灯,从点到线到面,从地面道路的红绿灯到高架的红绿灯可以形成联动,用实时融合数据从全局层面指挥红绿灯,让整个城市的交通形成一个有机体。
这是我们觉得更加激动人心,也更加有意思的一个场景,整个城市当中有了所有这些数据和交通工具运行相应的特征,还有过去各种历史行为,我们可以利用这些数据帮助城市管理者以及城市建设者作出一些重要的决策。
例如有的地方要修路或者建地铁站,或者有大型活动,我们如何针对这样的异常行为对交通进行相应的指挥?以往的做法可能就是决策者到现场去做调研,大致根据经验制定一个方案,这其实很大程度上是靠经验出来的。有了数据之后,我们完全可以在数据的层面进行实时的推演,因为可以把线下这些实际的交通状况在线上获得。有了这样的数据之后,我们可以实时推演,比如这条道路由双行道变成三行道的话对周边的交通会产生什么影响,这个地方如果要举行大型演唱会,有多少万人需要疏散的话,对交通会产生什么影响。我们可以对城市进行实时计算,利用这些鲜活的数据帮助我们制定各种各样的城市方案。
机场交通枢纽、轨道交通枢纽、高铁交通枢纽都是人流的主动脉,这些点上面其实交通效率和交通安全都是非常大的问题,同时又会有多种交通工具,比如地铁、公交、网约车甚至航空航班都在这样的交通枢纽相连。其实这些点都有非常大的潜力,我们可以把数据关联在一起。对于城市的管理者而言,他们可能觉得非常头大的问题就是,在这些交通点上他们一方面要关注交通效率,另一方面要关注交通安全,一旦发生重大事件要如何及时处理,需要他们把这些点上的数据处理好,把乘客人数弄清楚。其实光是把人数清楚对这样的交通枢纽就是巨大的挑战,需要把各种感知类的摄像头数据实时处理,然后进行大客流的预测,给出相应的预警,避免重大事情的发生,以及让乘客的交通体验更佳。
再来看一看航空。从数据层面,航空有三大块:航空公司、机场和空管,各自手里都有自己的数据。航空产业在数据层面有非常大的潜力,可以把数据进行融合,也能够给乘客产生更大的效率、提供更大的价值。航空当中有大量的计算运筹学的场景,比如对停机位的优化,每一架飞机到底应该停在停机位上还是停在停机坪上,我们可以通过算法尽量优化,让停机位的使用率变得更高。
城市规划这个行业现在做的都是一些传统的、基于各种图纸的规划,其实这个行业完全可以进行数字化的城市规划。有了数字化的城市规划之后,可以把城市当中各种各样的数据进行汇聚和融合,从地下的各种管网一直到地面上的各种建筑数据,我们可以对这些数据进行相应的融合和全时空的感知,构建整个城市的模型。
有了城市的模型以后,我们可以通过计算判断地下管网是否能够支撑上层的这些建筑,地面上的建筑和周边的交通的存量是否能够匹配,这些都是可以通过计算实现的,而且城市的整个生命周期和运营过程当中,如果城市的使用过程当中有一些点出现阻塞和资源不匹配,我们可以通过数据的方式进行计算,发现其中的问题,进而给出建议,然后对整个城市进行相应的优化。
工业是另外一个非常有趣的场景,涉及的数据是非常之多,有大量工业制造设备产生大量感知类的数据。工业场景当中很多重要的工业参数主要还是由工人师傅基于经验进行设置的,我们发现这个场景当中有巨大的机会,可以用数据帮助工人师傅进行加工生产的优化和提高。
比如关于循环流化床锅炉,这就是我们通常理解的锅炉,电力、化工等行业使用得非常多,我们可以对整个锅炉的燃烧过程建模,通过周边采集的各种感知类的数据发现这个锅炉当中是否燃烧均匀、是否充分燃烧、燃料和进气量是否匹配,等等,然后给出优化的参数。工程师会基于这些参数优化设备。我们发现在工业场景当中,生产效率、良品率或者能耗的一两个百分点的改动对整个成本和效益会产生巨大的推动。
再看金融场景。金融场景因为自身业务的发展,数据密度是非常之高的,场景包括保险、金融、银行等等各种各样的企业,这些企业面临着非常多的挑战。例如金融体系化的风险,常规的监管过程当中是基于一些规则进行监控的,在风险产生早期的时候,这些风险其实不为人所知。这个过程当中完全可以把金融的数据进行打通。
金融数据在我们看来其实是一种非常典型的关系网络数据,这种关系网络当中我们可以把异常的特征在早期阶段发现,能够提升整个行业风险的防范能力,在早期发现系统性的风险。此外金融行业当中有非常多的盗用帐号的黑灰产行业,通过各种手段非法获得用户的登录信息,因为这些黑灰产规模相对较大,行为当中也会表现出一定的特征,也是可以利用关系网络和大规模计算提前防范风险的。金融行业还有非常多的案例,比如新客的推荐等等,都是可以利用数据针对业务价值进行相应的提升。
刚才介绍的是我们在行业当中看到的产业AI能够带来的价值,这些其实都只是我们所看到的冰山一角,非常多的行业都有巨大的潜力。我们提出产业AI的价值就是以这种人工智能技术为核心,将技术和数据以及行业相结合,让人工智能技术深扎于行业当中,也让产业AI为整个行业创造价值。
图片新闻
最新活动更多
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-0120限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 【线上&线下同步会议】领英 跃迁向新 年度管理者峰会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论