《麻省理工科技评论》发布2018年“全球十大突破性技术”
4、人造胚胎
英国剑桥大学的胚胎学家们利用干细胞培育出了一种逼真的小鼠胚胎。值得一提的是,该胚胎并不是由卵细胞与精子结合而来的,只使用了从另一个胚胎中得到的细胞。
团队负责人 Zernicka-Goetz 称,她的“合成”的胚胎可能不会发育成老鼠。尽管如此,它们也意味着,我们很快就可以实现在没有卵子的情况下育出哺乳动物。
据了解,人工合成的人类胚胎将是科学家们的福音,这可以让他们梳理出胚胎在早期发展中经历的过程。而且,由于这些胚胎是从易操作的干细胞发展而来的,实验室将能够使用各种工具,例如基因编辑技术,在它们生长的过程中对它们进行研究。
5、对抗性神经网络
人工智能识别物体的能力已经越来越强了:给它看一百万张图片,它就可以用惊人的准确度来告诉你究竟哪张里面有个行人在过马路。但是 AI 几乎不可能独自生成行人的图片。如果它可以实现这一点,它将可以创造大量看似真实的合成图片,把行人放在各种环境下。而自动驾驶系统或许足不出户就能使用这些图片进行训练。
但问题在于,从无到有创造一个东西需要想象力,而这正是人工智能技术一直难以实现的能力。
直到 2014 年,当时还是蒙特利尔大学博士生的 Ian Goodfellow 突然想到了这个问题的答案,这就是“对抗式生成网络”(GAN)。
“对抗式生成网络”使用两个神经网络,而且使用同一个数据集进行训练。其中一个神经网络叫生成网络,它的任务就是依照所见过的图片来生成新的图片,比如一个多长一条手臂的行人。而另外那个神经网络叫判别网络,它的任务则是判断它所见得图片是否与训练时的图片相似,还是由生成模型创造出来的“假货”,比如,判断那个长着三个手臂的人有没有可能是真的?
慢慢的,生成网络创造图片的能力会强到无法被判别网络识破的程度。基本上,经过训练之后,生成网络学会了识别并创造看起来十分真实的行人图片。
这项技术已经成为了在过去十年最具潜力的人工智能突破,帮助机器产生甚至可以欺骗人类的成果。一些专家相信,GAN 在某种程度上已经开始理解它们所见到,所听到的世界的底层结构。而这意味着,随着人工智能开始获得想象力,它们也可能开始理解它在这世界上所看到的东西。
不过, GAN 的成果并非完美:它们可能生成有两套把手的自行车,或者眉毛错位的脸。
6、云端 AI——给所有人的人工智能
人工智能一直以来都只是亚马逊、百度、谷歌和微软等大型科技公司,以及少数初创公司的玩物。对于其他领域的众多公司来说,人工智能太贵也太难,无法全面普及。
这个问题该如何解决?基于云端的机器学习工具正在将人工智能带给更广泛的群体。如今,亚马逊旗下的 AWS 子公司几乎统治了云 AI 市场。谷歌则试图通过 TensorFlow 这款可以开发机器学习系统的开源人工智能框架来挑战它的地位。而谷歌近日刚公开的 Cloud AutoML 也是一套经过预先训练,可以让人工智能变得更容易使用的系统。
图片新闻
最新活动更多
-
直播中立即观看>> 【线上&线下同步会议】领英 跃迁向新 年度管理者峰会
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-0120限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论