侵权投诉
焊接机器人 喷涂机器人 搬运机器人 装配机器人 切割机器人 其它机器人
订阅
纠错
加入自媒体

人工智能芯片到底有何不同?

  2018年1月9日,全球规模最大的2018北美消费电子产品展在美国拉斯维加斯拉开帷幕。本次参展的科技企业超过4000家,包括高通、英伟达、英特尔、LG、IBM、百度在内的业界科技巨头纷纷发布了各自最新的人工智能芯片产品和战略,作为本届展会的最大看点,人工智能芯片产品无疑受到了最为广泛的关注。

  与CPU比较,人工智能芯片有何不同?

  2017年,当AlphaGo在围棋大战中完胜柯洁后,各大媒体对人工智能的讨论就不绝于耳,甚至有人担心机器会具备自主思维,终有一天会像电影《终结者》中的场景一样对人类造成生存威胁。不管这种危机是否存在,但必须认识到人工智能芯片在架构和功能特点上与传统的CPU是有着非常大的区别。

  传统的CPU运行的所有的软件是由程序员编写,完成的固化的功能操作。其计算过程主要体现在执行指令这个环节。但与传统的计算模式不同,人工智能要模仿的是人脑的神经网络,从最基本的单元上模拟了人类大脑的运行机制。它不需要人为的提取所需解决问题的特征或者总结规律来进行编程。

  人工智能是在大量的样本数据基础上,通过神经网络算法训练数据,建立了输入数据和输出数据之间的映射关系,其最直接的应用是在分类识别方面。例如训练样本的输入是语音数据,训练后的神经网络实现的功能就是语音识别,如果训练样本输入是人脸图像数据,训练后实现的功能就是人脸识别。

  

  通常来说,人工智能包括机器学习和深度学习,但不管是机器学习还是深度学习都需要构建算法和模式,以实现对数据样本的反复运算和训练,降低对人工理解功能原理的要求。因此,人工智能芯片需要具备高性能的并行计算能力,同时要能支持当前的各种人工神经网络算法。传统CPU由于计算能力弱,支撑深度学习的海量数据并行运算,且串行的内部结构设计架构为的是以软件编程的方式实现设定的功能,并不适合应用于人工神经网络算法的自主迭代运算。传统CPU架构往往需要数百甚至上千条指令才能完成一个神经元的处理,在AI芯片上可能只需要一条指令就能完成。

  解读主流的人工智能芯片

  人工智能的高级阶段是深度学习,而对于深度学习过程则可分为训练和推断两个环节:训练环节通常需要通过大量的数据输入或采取增强学习等非监督学习方法,训练出一个复杂的深度神经网络模型。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要的计算规模非常庞大,通常需要GPU集群训练几天甚至数周的时间,在训练环节GPU目前暂时扮演着难以轻易替代的角色。推断环节指利用训练好的模型,使用新的数据去“推断”出各种结论,如视频监控设备通过后台的深度神经网络模型,判断一张抓拍到的人脸是否属于黑名单。虽然推断环节的计算量相比训练环节少,但仍然涉及大量的矩阵运算。

  在推断环节,除了使用CPU或GPU进行运算外,FPGA以及ASIC均能发挥重大作用。目前,主流的人工智能芯片基本都是以GPU、FPGA、ASIC以及类脑芯片为主。

  1.FPGA

  即专用集成电路,一种集成大量基本门电路及存储器的芯片,可通过烧入FPGA配置文件来来定义这些门电路及存储器间的连线,从而实现特定的功能。而且烧入的内容是可配置的,通过配置特定的文件可将FPGA转变为不同的处理器,就如一块可重复刷写的白板一样。FPGA有低延迟的特点,非常适合在推断环节支撑海量的用户实时计算请求,如语音识别。由于FPGA适合用于低延迟的流式计算密集型任务处理,意味着FPGA芯片做面向与海量用户高并发的云端推断,相比GPU具备更低计算延迟的优势,能够提供更佳的消费者体验。在这个领域,主流的厂商包括Intel、亚马逊、百度、微软和阿里云。

  2.ASIC

  即专用集成电路,不可配置的高度定制专用芯片。特点是需要大量的研发投入,如果不能保证出货量其单颗成本难以下降,而且芯片的功能一旦流片后则无更改余地,若市场深度学习方向一旦改变,ASIC前期投入将无法回收,意味着ASIC具有较大的市场风险。但ASIC作为专用芯片性能高于FPGA,如能实现高出货量,其单颗成本可做到远低于FPGA。

1  2  下一页>  
声明: 本文系OFweek根据授权转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    机器人 猎头职位 更多
    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号