产业实践加速人工智能发展 打牢基础提高人工智能技术硬度
对策与建议
要扭转不利局面,彻底打通人工智能“产业+实践”的“任督二脉”,就要以产业链倒排的方法和决心,将产业实践提升到关乎人工智能革命成败的高度,坚决打造从研发到应用的闭环。
1.政策引领
我国虽已出台了《新一代人工智能发展规划》等一系列与人工智能相关的发展规划,但是专门推动人工智能产业实践的具体引导性政策还少之又少。除了国家层面制定的人工智能宏观政策战略部署要得当之外,各地区、各部门战术层面的路径也有待深化设计。
如协调制订不同地区人工智能产业布局,不但要有全局蓝图,更要有结合地区、行业及研发生态等的局部规划,避免出现重复建设的情况。要建立宏观、中观、微观上下贯通的产业实践体系,抓实施细则、讲落地实效,特别要着力保护人工智能创业企业,拉长风险预警周期,减少风险边界条件。
特别是在顶层技术研发政策方面,可借鉴美国科研顶层统筹的经验,成立人工智能技术国家级实验室,并设立行业分支二级实验室。同时,还要多研究具体应用场景下产业实践的准入政策,降低企业研发成果转化成本,推进人工智能与实体经济深度融合。
2.产业优先
(1)有效构建行业上下游技术语境和数据结构,打牢产业升级的基础。鼓励传统行业企业,特别是国有企业,成立人工智能事业部,对应用实践核心部门,在合理范围内积极开放工作场景及数据源代码,打通行业企业内部人工智能技术输入和输出路径,推动战略性新兴产业实现人工智能技术整体突破。鼓励成立细分行业产业基金,以行业发展收益反哺人工智能企业。
(2)积极探索行业企业与人工智能企业间技术共同持有、收益共同分享的合作机制。增加人工智能技术的容错空间,保障人工智能企业作为行业后入主体的合法权益,避免出现人工智能企业间恶性竞争。
3.聚焦重点
(1)基础类重点关注芯片技术。作为人工智能应用实现的物理基础和关键支撑,芯片是数据计算能力的核心体现。从技术特点、基本测试和发展路线等方面看,我国高精尖芯片研发水平仍相当薄弱,建议下一步的研发方向从云侧、边缘和终端设备等不同实践场景中提出需求,按照应用工况条件,提升动态计算精度、内存耗能和响应速度,重点关注体积、成本和算法架构。
(2)技术类重点关注视觉识别。视觉识别是目前人工智能关注度较高的领域,视觉技术对基础层和应用层上下游具有通用性,它既是基础类海量场景数据的最好提供者和产业实践较为充分的技术开发方向,又是算法用于工程化以便提供硬件产品的最好选择,可在智能制造等方向加强应用。重点行业应用视觉技术效果突出,特别是城市安防的“刚需”特征,使得商业价值和科研价值兼备,人工智能企业优劣之分应体现在是否有更加卓越的实战能力。
(3)应用类重点关注智能工业机器人。智能工业机器人是应用类人工智能的尖端产品,是各类人工智能技术的集大成者。机器人技术既需要芯片和算法的底层支持,还需要视觉识别和传感器等综合技术应用,最为关键的是机器人专注于工业实践场景,取代人类繁重重复的体力劳动是不可逆转的发展趋势。应用机器学习技术分析处理现场数据,提升人工智能条件下人机协作水平,增强人工智能企业和用户企业间协作研发的设计与生产能力,提高对用户需求特征的深度学习和分析能力。智能装备、智能工厂和智能服务是人工智能机器人的系统组成。
目前,国内真正依靠人工智能技术切入工业应用场景的创新企业并不多,如在飞机装配领域,大多数人工智能企业由于无法获取核心数据资料,甚至不能近距离了解需求,导致很难研发出解决工人真实工作中技术问题的智能装备,并尽快摘取工业机器人这颗人工智能皇冠上的宝石。
图片新闻
最新活动更多
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.26火热报名中>> OFweek2024中国智造CIO在线峰会
-
即日-0120限时下载>>> 爱德克(IDEC)设备及工业现场安全解决方案
-
限时免费下载立即下载 >>> 2024“机器人+”行业应用创新发展蓝皮书
-
即日-2025.8.1立即下载>> 《2024智能制造产业高端化、智能化、绿色化发展蓝皮书》
-
精彩回顾立即查看>> 【线上&线下同步会议】领英 跃迁向新 年度管理者峰会
推荐专题
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论